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1. Abbreviations: 
 

1. ADRB2 - Adrenoceptor Beta 2 

2. AMMS – Asseco Medical Management Solutions  

3. APS - Adenosine-5'-phosphosulfate 

4. ATP - Adenosine triphosphate 

5. AURKA – Aurora Kinase A gene 

6. BAM – Binary Alignment Map 

7. BCF - BIM Collaboration Format 

8. BLAST – Basic Local Alignment Search Tool 

9. Bp – Base pairs 

10. BWA – Burrows – Wheeler Aligner 

11. CACNA1A - calcium voltage-gated channel subunit alpha1 A 

12. CCDC33 - Coiled-Coil Domain Containing 33 

13. CDKAL1 - CDK5 Regulatory Subunit Associated Protein 1 Like 1 

14. CEO – Chief Executive Officer 

15. CFTR - Cystic Fibrosis Transmembrane Regulator 

16. CI – Confidence Interval 

17. DAMP – Damage associated molecular patterns 

18. ddNTP - dideoxy-Nucleoside triphosphates 
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19. DNA – Deoxyribonucleic Acid 

20. ELANE - neutrophil elastase 

21. FUT2 - alpha-1, 2-L- fucosyltransferase 

22. GHRL - Ghrelin And Obestatin Prepropeptide 

23. GI – Gastrointestinal Tract 

24. GRCh38 - Genome Reference Consortium Human Build 38 

25. GWAS – Genome-wide association studies 

26. HIIET – Hirszfeld Institute of Immunology and Experimental Therapy 

27. HMP – Human Microbiome Project 

28. IBD – Inflammatory Bowel Disease 

29. IL – Interleukina 

30. ISP – Ion Sphere Particles 

31. ICD - International Classification of Diseases 

32. Kb – kilobases 

33. LCT – functional lactase gene 

34. LINC01192 - Long Intergenic Non-Protein Coding RNA 1192 

35. LPS – lipopolysaccharide 

36. LTA – Lymphotoxin Alpha  

37. MADCAM1 - Mucosal Vascular Addressin Cell Adhesion Molecule 1 

38. MTHFR – Methylenetetrahydrofolate 

39. MTTP - Microsomal Triglyceride Transfer Protein 

40. MUC1 - Mucin 1, Cell Surface Associated 

41. NCBI - National Center for Biotechnology Information 

42. NF-kB - Nuclear factor- Kappa Beta 

43. ng – nanograms 

44. NGS – Next Generation Sequencing 

45. NOD1 - Nucleotide Binding Oligomerization Domain Containing 1 

46. OT2 – One Touch 2 

47. OTU – operational taxonomy units 

48. PBS - Phosphate buffered saline 

49. PC – Principal Component 
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50. PCA – Principal Component Analysis 

51. PCR – Polymerase Chain Reaction 

52. PGLYRP4 – Peptidoglyvan recognition protein 4  

53. PGM – Personal Genome Machine 

54. pH – potential of hydrogen 

55. RDP – Ribosomal Data Project 

56. RNA – Ribonucleic Acid 

57. RPM – Revolutions per minute 

58. rRNA – Ribosomal Ribonucleic Acid 

59. SAM – Sequence Alignment Map 

60. SLC2A9 - Solute Carrier Family 2 Member 9 

61. SLIT3 - Slit Guidance Ligand 3 

62. SNP - Single Nucleotide Polymorphism 

63. TLR – Toll like receptor  

64. TMEM91 - Transmembrane Protein 91 

65. TNF – Tumor Necrosis Factor 

66. TSPAN8 – Tetraspanin 8  

67. ul – microliters 

68. US – United States 

69. UV – Ultraviolet 

70. VCF – Variant Call Format 

71. VDR – Vitamin D Receptor 

72. VLP – Virus-like proteins 

73. ZNF – Zinc Finger Protein 

2. Used Materials: 
 

1. 0,22 μm syringe filters (Millipore) 

2. 0.2 ml Tubes, flat cap (Thermofisher Scientific) 

3. 1.5 ml Eppendorf Safe-Lock Tubes (Eppendorf) 

4. 16S Metagenomics Kit (Thermofisher Scientific) 

5. 2 ml Eppendorf Safe-Lock Tubes (Eppendorf) 
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6. AMPure XP Reagent for PCR purification (Beckman Coulter) 

7. CaCl2 (Sigma-Aldrich) 

8. Ep. T.I.P.S. Pipette Tips 10,20-200,100-1000 (Eppendorf) 

9. Ethanol 96% (Sigma-Aldrich) 

10. Genomic Micro AX Blood Gravity (A&A Biotechnology) 

11. GenomiPhi V2 DNA Amplification Kit (Cytiva Life Sciences) 

12. Illumina DNA Prep [Nextera DNA Flex before 2021] (Illumina) 

13. Ion 316 Chip Kit v2 BC (Thermofisher Scientific) 

14. Ion 318 Chip Kit v2 BC (Thermofisher Scientific) 

15. Ion Ampliseq Library Kit Plus (Thermofisher Scientific) 

16. Ion PGM Hi-Q View OT2 Kit (Thermofisher Scientific) 

17. Ion PGM Hi-Q View Sequencing Kit (Thermofisher Scientific) 

18. Ion PGM Wash 2 Bottle Kit (Thermofisher Scientific) 

19. Ion Plus Fragment Library Kit (Thermofisher Scientific) 

20. Ion Universal Library Quantification Kit (Thermofisher) 

21. Ion Xpress Barcode Adapters 1-16 Kit (Thermofisher Scientific) 

22. Microseal PCR plate Seal (Bio-rad) 

23. Miseq Reagent Kit V3 (Illumina) 

24. Micro Beat Bead Gravity AX kit (A&A Biotechnology) 

25. NaOH (Sigma-Aldrich) 

26. Nextera DNA CD Indexes - 96 indexes, 96 samples (Illumina) 

27. NextSeq 500/550 Mid Output kit (Illumina) 

28. PCR-plates, 96 well, non-skirted (Thermofisher Scientific) 

29. PhiX sequencing Control V3 (Illumina) 

30. Phosphate buffered saline (Sigma-Aldrich) 

31. QuantiFluor ds DNA system 1 ml (Promega) 

32. Qubit dsDNA High Sensitivity Kit (Thermofisher Scientific) 

33. Sherlock AX (A&A Biotechnology) 

34. Sterile Water for Injection (USP) 

35. Tris-HCl buffer, pH 8.0 (Sigma-Aldrich) 

36. TUBE PA Easy Seal ultracentrifugation tubes PK/50 (Thermofisher Scientific) 
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3. Used Devices: 
 

1. CFX 96 Real-Time PCR system (Bio-Rad) 

2. Ion Torrent PGM sequencing machine (Thermofisher) 

3. Ion OneTouch 2 System (Thermofisher) 

4. Ion PGM Torrent Server (Thermofisher) 

5. Denovix DS-11 Spectrophotometer (Denovix) 

6. ABI Applied Biosystems 9902 Veriti PCR Thermal Cycler (Applied Biosystems) 

7. Eppendorf Mastercycler Nexus 2XE (Eppendorf) 

8. Thermomixer C (Eppendorf) 

9. NextSeq 550 sequencing system (Illumina) 

10. MiSeq system (Illumina) 

11. Centrifuge 5424R (Eppendorf) 

12. Centrifuge 5810 (Eppendorf) 

13. Vortex-Genie 1 (Scientific Industries) 

14. Roller Digital shaker (IKA) 

15. Quantus Fluorometer (Promega) 

16. Qubit 2.0 (Thermofisher Scientific) 

4. Bioethical statement 
 

Biological material used in descripted experiments was taken by physicians working in 

Regional Samples were collected in accordance with the principles of good clinical practice 

and the Declaration of Helsinki. Consent no. KB/nr 8/rok 2017 has been given by Bioethical 

commission in Research and Development Center, Regional Hospital in Wroclaw.    

  

5. Index of Tables 
 

• Table 1. An individual script for Python 3.6 used for 16S rRNA data analysis with 

sequences derived from Ion Torrent PGM instrument – Single End Reads saved in 

FASTQ files. 
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• Table 2. Script in Python 3.6 used for data cleaning and Kraken2 screening analysis for 

Paired End Reads from Illumina sequencing. 

• Table 3. Bash script used for converting FASTQ files derived from IonTorrent PGM 

sequencer to Annotated Variant Call Format (VCF) files for further statistical analysis. 

VCF format is required as an input for further bioinformatic operations. It contains 

information about identified SNPs and their positions in the investigated genome. 

• Table 4. Script used for merging 16S rRNA data from kraken2 reports. Jupyter lab 

software was used to perform all actions in cited scripts. For better readability for the 

purposes of this document, the individual cell results have been omitted. 

• Table 5. Script used for merging VCF format files. Jupyter lab software was used to 

perform all actions in cited scripts. For better readability for the purposes of this 

document, the individual cell results have been omitted. 

• Table 6. An individual script created for identification of organisms’ taxonomy based 

on taxomizr package. The script automates annotation based on taxids presented in 

output BLAST files. Finally, data derived from FASTQ files were saved as csv and 

proceeded for statistical data analysis. All data were normalized against total number 

of reads in each sample 

• Table 7. Shannon Wiener Index equation transformed into Python function to calculate 

values for specified samples 

• Table 8. A script used to implement function for PCA analysis on csv generated from 

16S rRNA, phageome, and SNPs identification. R in 3.1 version was used. 

• Table 9. Individual function to implement Cramer’s V test for nominal variable 

calculation in Python 3.6 

• Table 10. ICD-10 classified diseases diagnosed by physicians during endoscopy 

examination of patients enrolled to this study 

• Table 11. Correlations between bacterial species found in the microbiome composition 

in patients and ICD classified illnesses diagnosed among them. P-value was calculated 

using z-test function from statsmodels Python 3.6 library 

• Table 12. Correlations between bacteriophage genera found in the microbiome 

composition in patients and ICD classified illnesses diagnosed in these patients. P-

value was calculated using z-test function from statsmodels Python 3.6 library. 
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• Table 13. SNPs that correlate with significant change in bacterial microbiome 

composition measured by Shannon-Wiener Index. T-test was performed using CI = 9% 

and p<0.05. 

• Table 14. Correlations between presence of selected bacterial species associated with 

gastritis and diversity in patients’ microbiomes. P-value calculated using t-test. 

• Table 15. Concomitance of variants and composition of bacteriophages’ part of 

microbiome. Estimation was obtained using collections library in Python 3.6. 

• Table 16. Specific alleles related to increased frequency of Helicobacter pylori 

presence in stomach. Table created using counter Python 3.6 library on Ampliseq 

sequencing data and bacterial microbiome composition features. Cramer’s V test was 

used to confirm that presence of H. pylori is correlated with above variants with p<0.01. 

• Table 17. Alleles related to bacteria related to increased frequency of Rothia 

mucilaginosa. Table created using counter Python 3.6 library on Ampliseq sequencing 

data and bacterial microbiome composition features. Cramer’s V test was used to 

confirm that presence of R. mucilaginosa is correlated with above variants with 

p<0.005. 

• Table 18. Alleles related to bacteria related to increased frequency of Prevotella 

melanonigica. Table created using counter Python 3.6 library on Ampliseq sequencing 

data and bacterial microbiome composition features. Cramer’s V test was used to 

confirm that presence of P. melanogenica is correlated with above variants with 

p<0.01. 

• Table 19. Alleles related to bacteria related to increased frequency of Neisseria 

subflava. Table created using counter Python 3.6 library on Ampliseq sequencing data 

and bacterial microbiome composition features. Cramer’s V test was used to confirm 

that presence of N. subflava, is correlated with above variants with p<0.01. 

• Table 20. Alleles related to bacteria related to increased frequency of Prevotella jejuni. 

Table created using counter Python 3.6 library on Ampliseq sequencing data and 

bacterial microbiome composition features. Cramer’s V test was used to confirm that 

presence of P. jejuni correlated with above variants with p<0.01. 
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• Table 21. Variants related to increased presence of bacteriophages in patients’ 

phageomes; significantly more frequently represented phage families and their hosts 

are listed. Correlations were derived using Cramer’s V test and ViralHost Database. 

6. Index of Figures 
 

• Figure 1. Timeline presents highlights of the sequencing and microbiome research. 

Figure was created using Biorender software.  

• Figure 2. Scheme of the ultracentrifugation tube with CsCl layers loaded on. With 

arrow place from where bacteriophage fraction was collected 

• Figure 3. Scree plots presenting eigenvalues for each individual Dimension. Variances 

were calculated using get_eigenvalue() function in R’s factoextra library. Two 

dimensions that cover most of the percentage of explained variances were chosen for 

biplot creating. Panel (A) is related to bacterial microbiome composition data, while 

panel (B) to bacteriophage microbiome composition data. 

• Figure 4. Reports for 16S rRNA amplicon sequencing generated with Ion Torrent PGM 

generated with IonTorrent Server. 3 Panels to each sample present Quality control data 

regarding 16S rRNA amplicons. Panel (A) - Distribution of ISPs on the chip. The 

redder the color, the higher the density of beads at a given location on the chip. Panel 

(B) - Statistics on sequenced ISPs. The individual percentages show whether the 

process of preparing the library was carried out correctly. Panel (C) - Statistics on the 

single reads that were successfully generated during sequencing. 

• Figure 5. Reports for Ampliseq amplicon sequencing generated with Ion Torrent PGM 

generated with IonTorrent Server. 3 Panels to each sample present Quality control data 

regarding Ampliseq amplicons. Panel (A) - Distribution of ISPs on the chip. The redder 

the color, the higher the density of beads at a given location on the chip. Panel (B) - 

Statistics on sequenced ISPs. The individual percentages show 62 whether the process 

of preparing the library was carried out correctly. Panel (C) - Statistics on the single 

reads that were successfully generated during sequencing. 
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• Figure 6. An example reports for Illumina sequencing generated using FASTQC 

software. Panel (A) – distribution of quality scores among generated reads. Panel (B) 

– distribution of Phred quality scores among single base pairs in generated reads. 

• Figure 7. SNPs which correlate with significant change in Shannon-Wiener diversity 

index. Significance was calculated with Confidence Interval = 95% for p<0.05 using t-

test. Results for samples with an identified single nucleotide allele are marked as 

"variant". Results for samples without an identified single nucleotide allele are marked 

as "Reference". 

• Figure 8. Bacteriophages presence which correlates with significant change in 

Shannon-Wiener diversity index. Significance was calculated with Confidence Interval 

= 95% for p<0.05 using t-test. Results for samples with specified bacteriophage are 

marked as "present". Results for samples without specified bacteriophage are marked 

as "absent". 

• Figure 9. Two-dimensional biplot showing the relationship between the different 

genera of bacteria, which affects their clustering in PCA analysis. Patients with 

complete phage and bacterial microbiome composition data as well as sequencing 

SNPs were used for analysis. Analysis was done using bacterial microbiome 

composition data. 

• Figure 10. Biplot visualizing dimensions that represent bacteriophage genera derived 

from metagenomics sequencing and that have the highest influence on PCA plots. 

Patients with complete phage and bacterial microbiome composition data as well as 

sequencing SNPs were used for analysis. The presence of some bacterial groups in this 

Figure is due to their annotation in the NCBI database: some of the bacteriophages are 

prophages for instance: Haemophilus, Streptomyces, thus annotated as a part of 

bacterial genomes. 

• Figure 11. Principal Component Analysis applied to different Operational Taxonomy 

Levels in bacterial microbiome. Plot created using ggplot2 library in R. Panel (A) 

shows samples clustered by bacterial family’s microbiome composition, panel (B) 

shows samples clustered by bacterial genus microbiome composition, panel (C) shows 

samples clustered by bacterial species. 



17 
 

• Figure 12. Principal Component Analysis applied to different Operational Taxonomy 

Levels in phageome. Plot created using ggplot2 library in R. Panel (A) shows samples 

clustered by bacteriophages’ species microbiome composition, panel (B) shows 

samples clustered by phages’ genus microbiome composition. 

• Figure 13. Scree plots generated to evaluate explained Variance among calculated 

Principal Components. Data generated using ggplot2 R’ package. Panel (A) present 

scree plot for bacteriophages’ microbiome composition while Panel (B) presents scree 

plot for bacterial microbiome composition. 

• Figure 14. Principal Component Analysis applied to bacterial microbiome composition 

data. Plot created using ggplot2 library in R. Panel (A) present data generated basing 

on bacterial composition of microbiome while panel (B) shows data for 

Bacteriophages’ part. 

• Figure 15. Principal Component Analysis applied to bacterial microbiome composition 

data and grouped by presence of pathogens related to gastritis. Figure created using 

ggplot2 library in R. Panel (A) present visualization of presence of H. pylori, Panel (B) 

is dedicated to N. subflava presence, Panel (C) is for P. melaninogica, Panel (D) shows 

data related to R. mucialignosa. 

• Figure 16. 3D Principal Component Analysis plotted based on phageome components 

of human microbiome. individual items have been labeled according to whether 

specific chronic illness was diagnosed. Figure was created using pca3d package in R. 

Panel (A) shows bacteriophage composition data with labeled patients with claimed 

hypertension. Panel (B) shows bacteriophage composition data with labeled patients 

with claimed diabetes. 

• Figure 17. 3D Principal Component Analysis plotted based on bacterial components of 

human microbiome. individual items have been labeled according to whether specific 

chronic illness was diagnosed. Figure was created using pca3d package in R. Panel (A) 

shows bacterial composition data with labeled patients with claimed hypertension. 

Panel (B) shows bacterial composition data with labeled patients with claimed diabetes. 

• Figure 18. Bacterial components microbiome profiling based on 16S rRNA sequencing 

belonging to sample “E35”. Figure created using Krona Tools. 
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• Figure 19. Bacterial microbiome profiling based on 16S rRNA genes sequencing in 

sample “E180”. Figure created using Krona Tools. 

• Figure 20. Phageome microbiome profiling based on shotgun sequencing in sample 

“E157”. Figure created using Krona Tools. 

• Figure 21. Phageome microbiome profiling based on shotgun sequencing in sample 

“E95”. Figure created using Krona Tools. 

7. Index of equations 
 

• Equation.1 Shannon Wiener Index equation. s - the number of Operational Taxonomy 

Units (OTUs). pi - the ratio of the number of individuals of a given OTUs by i. 

• Equation 2. Normal z-test equation used in statsmodel library in function 

statsmodels.stats.proportion.proportions_ztest¶ written in Python 3.6. �̂� – sample 

proportion, 𝑝 – population proportion, 𝑛 – sample size. 

 

 

 

 

8. Introduction 

8.1. Human microbiome concept 
 

Once upon a time researchers decided to understand better bacteria that inhabit human’s body. 

They decided to run Human Microbiome Project (HMP) (Peterson et al., 2009), to try to 

comprehend composition of microorganisms that can be found in different parts of body. 

Initiative was taken by four research centers in the US: University of Maryland, Berkeley Lab, 

Joint Genome Institute, and University of Colorado Boulder that have obtained funding from 

Common Fund support by National Institute of Health. Two phases of the program were 

planned. From 2008 till 2013, they collected samples from 300 individuals, including 5 parts 

of their bodies: nasal cavity, oral cavity, skin, gastrointestinal tract (GI) and urogenital tract. 

Initially, researchers had only 5 objectives to complete. They wanted to create a reference set 

of minimum 3000 microbiota genome sequences, to reveal the complexity of the bacterial 

community among body sites where sample were taken. They wanted to find whether changes 
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in human microbiome composition may have an effect on occurrence of diseases, to develop 

new workflows for computational data analysis, and setting up procedures to examine human 

microbiota in accordance with ethical principles. An interview was conducted with all sample 

donors to evaluate their health status. As a result, researchers expected to find correlations 

between characteristic microorganisms’ communities and the declared well-being. Two 

different technological approaches were used to obtain such information. 16S rRNA gene 

sequencing was used to characterize bacterial part of metagenome isolated from selected 

niches (Prodan et al., 2020). This gene encodes a small subunit of bacterial ribosomes. All 

bacteria possess a characteristic variant of this gene. 16S rRNA coding regions contain short 

conserved fragments common to all groups and hypervariable regions (Kang et al., 2021) 

Sequencing of these hypervariable regions allows to assign bacteria up to their species. The 

second technological approach applied by the consortium was whole genome shotgun 

sequencing which provided extensive information about metabolism pathways, antibiotic 

resistance genes, presence of fungi, and both prokaryotic and eukaryotic viruses (Castelino et 

al., 2017; Ranjan et al., 2016).  

This type of study was possible due to the recent advance of DNA sequencing methods. 

Recently worked out milestone called “Next-Generation Sequencing” (NGS) revolutionized 

the approach for identification of genetic information preserved in both prokaryotic and 

eucaryotic cells as well. Before developing high throughoutput sequencing like NGS, it was 

difficult to study microorganisms which were unable to grow in laboratory conditions. With 

the ability to study entire bacterial fractions using DNA sequencing, completely new species 

and metabolic pathways that were previously unknown were discovered. 

Phase 1 of the Human Microbiome Project ended in 2013, yielding with terabytes of data 

which are being a subject of analyses to present days. Due to outstanding results, the 

consortium proceeded to the next phase. More and more questions arose during the project. It 

became obvious that data required deeper analysis. Scientists involved in HMP decided to 

create integrative HMP (iHMP). The new approach included creation of a database, which 

contained metagenome data that can be linked to current host health status described for each 

individual. Easily accessible datasets were published and they became a unique source of 

information for scientists all over the world. As a consequence of phase 2 HMP, three 
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clinical studies were performed, which included host phenotype – microbiome interactions. 

Investigators analyzed association of preterm births to vaginal microbiome of mothers 

(Vinturache et al., 2016), presence of inflammatory bowel disease (IBD) to composition of 

gastrointestinal tract microbiota (Zuo & Ng, 2018), and diabetes 2 was correlated to nasal and 

GI tract microbiomes (Kumpitsch et al., 2019). As it has been stated on official HMP 

website, second phase was ended in 2016. From the beginning in the year 2008, to the year 

2017, over 50 papers resulting from HMP were published in top ranked scientific journals. It 

was a huge booster for microbiome research not only in the US, but all over the world. 

During almost 10 years, NIH supported microbiome research with more than $1 billion of 

which HMP accounted for 215 million. Sixty-five Principal Investigators have been selected 

to manage tasks under this project. Estimates suggest that the second amount was spent 

outside the United States on similar studies aimed at defining microbiome relationships. 

What is more, only in 2020 over 1$ Billion grants were awarded to microbiome related 

research and 75 000 papers were published in that scientific area. Despite crossing the 

billion-dollar barrier, this is not a record amount. The largest support spent so far on 

microbiome was in 2019, when funding for such projects reached $1.9 billion (Peterson et 

al., 2009; Ursell et al., 2012). 

8.2. Dark ages of microbiota research 
 

Basing on DNA sequencing development, it could be concluded that microbiome research 

started in early 2000s, but the fact is, it was born same time as microbiology. Antonie van 

Leewenhoek, known for constructing the first microscope, was the first unintentional 

microbiome researcher. In his notes in 1680 he reported observations of samples taken from 

mouth and those from stools that were completely different. It is the first documented 

investigation aimed to understand microorganisms living in human organism. Choice of 

sampling locations was dedicated to hypothesis that had formerly been posed:  diseases were 

associated with bad smells coming from human body, so the researcher chose those emitting 

the worst. Unfortunately, van Leewenhoek did not develop any theory about specific pathogens 

causing the odors and health problems (Bardell, 1982; Leewenhoeck, 1684).  

In the years 1888 – 1891 Sergei Winogradsky was working in Swiss Polytechnic Institute in 

Zurich. This Russian biologist spend time of his early research in botanist laboratory. He 
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studied Mycoderma vini which was responsible for a plague on sugar beets and nowadays it is 

known because of its ability to spoil wine. Windogradsky should be considered as the first 

microbiologist focused on environmental microbiome composition. He stated that there was a 

necessity to observe bacteria in their natural settings. In his publication in the year 1949, he 

claimed that microbes acted differently in natural habitats than in laboratory prepared growth 

media. He developed a tool named “Winogradsky column”. It was a simple device which for 

the first time allowed to culture wide range of microorganisms in conditions similar to natural 

environment (Ackert, 2007; Dworkin & Gutnick, 2012).  

Breakthrough for microbiology and human microbiome research was the work of Louis 

Pasteur and Robert Koch. These chemist and physician from France and Germany 

(respectively), have brought the world new tools to discover the world of microbes. Staining 

techniques optimized by Koch are used to present days in microscopic observations. One of 

his assistants called Julius Petri designed shallow dish named after him. This dish is the major 

symbol of microbiology widely recognizable and used by researchers on daily basis for 

culturing bacteria. The other one, Walther Hesse, developed the first solid medium. That time, 

scientific world was aware of the existence of microorganisms that inhabitant the human body. 

However, specific identification of these species was too difficult (Spichler et al., 2015; Surana 

& Kasper, 2014).  

In 1901, Eli Metchnikoff who was a Russian biologist focused on zoology and immunology 

presented a concept that use of lactic acid bacteria can improve condition of human 

gastrointestinal tract and it is the key to a long and healthy life. That was the moment when the 

concept of “probiotics” was presented and when a market of probiotics, currently estimated for 

more than $34 billion, was born.  His hypothesis was published in his “The Prolongation of 

Life: Optimistic Studies” (Metchnikoff, 1907); to reinforce the idea he was supporting, he 

himself drank a glass of sour milk every day. He stated that longevity of Bulgarian peasants 

resulted from their increased yogurt consumption. Unfortunately, the concept of probiotics was 

discontinued until the end of XX century, when modern microbiological research confirmed 

some of his statements (Mackowiak, 2013; Podolsky, 2012). 

Soon, in 1909, Arthur I Kendal, a bacteriologist living in the US, demonstrated effects of diet 

on the communities of microorganisms present in intestinal tract in monkeys and further 
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implications for the animals’ health (Kendall, 1909). Development of germ-free animal models 

in 1950s can be considered as the first milestone in modern microbiome research. It opened 

the new way to examine host-microbe interactions. Rene Dubos from Rockefeller Institute for 

Medical Research was the first who observed that pathogenicity of bacteria was dependent on 

external conditions. He confirmed the theory presented before by Arthur I Kendall. Dubose’s 

team provided information about correlation between diet, stress, and microbes living in 

human body determining human health status(Aziz, 2009).  

Because of the technical limitations in microbiological research that could only investigate 

culturable bacteria, sequencing techniques designed in 1980s opened a completely new 

possibilities in microbiome research. Carl Woese and George E. Fox were microbiologist who 

set foundation for further big-scale metagenomic analysis. Their concept of “tree of life” based 

on molecular markers is used to present day for characterizing newly discovered organisms 

(Woese & Fox, 1977). Nevertheless, the true revolution of microbiome research was about to 

come.  

8.3. Microbiome that surrounds human 
 

Ribosomal Data Project (RDP) aims to collect ribosomal sequences that have been identified 

around the world. Bacterial and archeal 16S rRNA sequences, as well as fungal 28S rRNA 

sequences collected within RDP are crucial for taxonomy identification of sequenced 

microbiomes. These genes consist of hypervariable regions flanked by conserved fragments. 

It makes them perfect candidates for highly efficient targeted sequencing. In 2012, RDP 

contained around 1 million of documented oligonucleotides. Unfortunately, only 5% of them 

were not derived directly from human microbiomes (Vasileiadis et al., 2012) Researchers 

however started identification of microbial communities from sites where according to 

previous assumptions living organisms including microbes could not exist, for instance from 

thermal geysers, volcanoes, or ocean depths. New technological solutions for detection of 

whole microbial communities have made it possible to describe the variability of bacteria 

found across continents (Prodan et al., 2020).  

An exemplary experiment was conducted by Lauber et al.(Lauber et al., 2009). They collected 

soil samples from 88 sites in the Americas. Using a pyrosequencing method, they identified 

16S rRNA gene fragments belonging to bacteria existing there, which allowed for detection of 
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25 phyla across all samples and for demonstration that pH can be a good predictor for microbial 

soil composition (Lauber et al., 2009). Another approach defined bacteria that were living in 

Hot Springs placed in Yellowstone. For a long time, this environment was considered as 

uninhabited because of the extreme conditions there. Characteristic communities of bacteria 

living in this place have been identified and new relationships between different groups of 

microorganisms have been demonstrated (Miller et al., 2009). NGS identification of 16S rRNA 

enabled H Song group and coworkers to examinate biodiversity in fresh volcanic ash. Diverse 

microbiota was observed, in spite of extreme environmental conditions (Song et al., 2020).  

The most abundant communities of microorganisms can be found in water that covers 71% of 

surface on planet Earth. Studies of bacterial samples from the deepest parts of the ocean were 

impaired, since it was impossible to create adequate laboratory conditions to imitate natural 

growth conditions of microorganisms. NGS become a solution allowing studies of the 

unculturable bacterial communities, including those in the deep ocean.  

Samples from various water layers were collected in a place with the deepest water on earth – 

Marina Trench. Surprising ecological diversity was discovered, increased in deeper water 

layers (>4000 m). While surface waters were occupied mostly by Cyanobacteria, lower parts 

turned out to be rich in microorganisms that produce proteins involved in degrading nitrate to 

ammonia and urea transport (Xue et al., 2020).  

Recently, it has become a standard to upload raw sequences for every published study, 

including microbiome research. Big amounts of data generated by NGS are publicly available 

in open databases portals. Accessible data from defined metagenomes are a great source of 

sequences for further analyses (Zaparucha et al., 2018). Environmental microbiomes are not 

only containing prokaryotes and eukaryotes. The most abundant part are viruses, for instance 

up to 1010 of viruses in 1 gram of soil. Vast majority of bacteria are infected by bacteriophages 

that strongly contribute to microbial diversity in the environment (Kuzyakov & Mason-Jones, 

2018).  

8.4. Sanger revolution 
 

First DNA sequences were identified in 1970s with the use of two-dimensional 

chromatography. First DNA sequencing method was optimized by Ray Wu in 1968 when he 
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reported the first partial sequence of lambda DNA bacteriophage. In 1973 Walter Gilbert and 

Allan Maxam annotated 24 base pairs using their original method to know lac operator in E. 

coli. Nevertheless, breakthrough came with Frederick Sanger. His method known as “chain 

termination” turned out to be a gold standard of DNA sequencing for a long time. It was known 

that DNA polymerase uses dNTPs to build complementary strand during amplification 

process. In 1977 his group optimized a method based on 4 manual Polymerase Chain Reactions 

(PCR). The process was fast and it was impossible to control with systems available those 

days. Sanger overcame that problem by developing a new way of termination of amplification 

process in the desired short time. According to four bases that build DNA they prepared 4 

different PCR reactions. Each of them contained a small amount of single type of dideoxy-

Nucleoside triphosphates (ddNTP) representing Adenine (ddATP), Thymine (ddTTP), 

Guanine (ddGTP) and Cytosine (ddCTP). Once ddNTP was fused into the DNA strand, no 

other base could be fused and reaction was terminated. This step was followed by gel 

electrophoresis. Samples from all four reactions were placed in separate lines in the gel. DNA 

fragments migrate in the gel in a electric field with a speed dependent on their mass. This 

phenomenon makes it possible to relate length of DNA fragments to specific type of ddNTP 

that terminated PCR reaction (Heather & Chain, 2016a; Shendure et al., 2017). Frederick Sanger 

is the most famous scientist in the field of DNA sequencing who got Nobel Prize in 1980 for 

his “dideoxy” method. 

Human Genome Project was an idea to reveal the sequence of human genome and it employed 

the Sanger method. Officially, in 1990 the program has been launched. News headers were 

announcing solving the most complex mystery that humanity ever had, but in the end, 

researchers knew that it was only a praeludium for a multitude of further projects. Even though 

only euchromatic regions of human genome were sequenced, completion of the program was 

announced in 2003. Approximately 92% of the genome was assembled and eventually more 

data were acquired than ever before. Soon it became obvious that more robust, faster, and what 

is the most important, cheaper techniques will be needed. Approximately 3 billion base pairs 

cost about $2.7 billion in the time of target completion. Today, cost of sequencing is much 

lower than 1000$ per genome and it takes no more than 24h. However, we are approaching the 

fifty fifth anniversary of the first report on DNA sequencing (Heather & Chain, 2016a).  
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The main disadvantage of Sanger sequencing is the use of electrophoretic separation for 

identification of molecular mass of DNA fragments. This method is efficient for particles with 

relatively low masses. It is however much more complicated in longer DNA fragments, where 

a single base does not represent a significant part of the whole mass of the whole molecule. 

For this reason, sequencing of DNA particles longer than 700 base pairs with this method is 

difficult(Heather & Chain, 2016b). This technique has however been used in laboratories for 

almost 25 years, until 2000s when the second-generation sequencing technologies (called also 

Next-Generation Sequencing) replaced it. It does not mean that this technique has been 

abandoned. Sanger pattern of DNA sequencing is still used in novel tools designed by 

engineers. Modern techniques parallelized PCR reactions that were previously prepared 

manually. The development of variations derived from Sanger sequencing has resulted in a 

whole branch of techniques named as “Sequencing by synthesis”. All of them are based on 

PCR amplification termination and reading base-dependent signals (Heather & Chain, 2016a). 

8.5. Pyrosequencing 
 

In 2004, 454 sequencers developed by Life Sciences from Branford in Connecticut presented 

a revolutionary instrument that enabled parallel sequencing for thousands of DNA molecules 

at the same time. They based their technology on pyrosequencing, which is an extension of the 

“Sequencing by synthesis” optimized by Sanger. It was developed as early as in 1996, but had 

not enter commercial use before 2004 (Shendure et al., 2017). In this method, the signal from 

a specific nucleotide is detected through chemiluminescence. It allowed for the first time to 

sequence many isolates derived from different individuals in one sequencing sample by the 

use of the barcoding method. That required DNA preparation by ligation of strands to short 

oligonucleotides(Heather & Chain, 2016b). Sequences of these short chains were defined, and 

then during bioinformatic analysis it was possible to distinguish oligonucleotides in one isolate 

from those in the others. Pyrosequencing begins with addition of one type of nucleotides. 

Polymerase incorporates them into single chains attached to the beads according to the 

principle of complementarity. Each nucleotide attachment is accompanied by the release of 

pyrophosphate to form a phosphodiester bond. This leads to a cascade reaction in the solution 

where ATP sulfurylase (Sulfate adenylyltransferase) converts pyrophosphate to ATP in the 

presence of APS (Adenosine-5'-phosphosulfate). The luciferin is also present in the reaction 



26 
 

mixture, and with ATP it is transformed by the enzyme luciferase with emitting the light, which 

is detected by the device. The intensity of the light is directly proportional to the amount of 

ATP produced. So called pyrogram shows the amount of light produced in time, which 

represents the number of nucleotides attached. The reaction mixture is then regenerated by the 

enzyme apyrase, which degrades ATP and unbound nucleotides. After this event, the cycle 

repeats with the addition of another type of nucleotide. Although the sequencers have been 

improved and now allow sequences of up to 400 bp in length to be read, the principle of the 

reaction and the operation of the sequencers remain unchanged. (Ahmadian et al., 2006; Nyrén, 

2007; Ronaghi et al., 1998). .  

8.6. Ion Semiconductor Sequencing 
 

Almost 13 years ago Chris Toumazou, a founder and CEO of DNA Electronics developed a 

technology that made possible to sequence DNA on silicon-based chips. The company 

addressed the need of real-time sequencing. In 2010, this technology was licensed to other 

sequencing company called Ion Torrent Systems Inc. This tool was intended for fast, reliable, 

and portable gene sequencing in the real time. Physicochemical phenomena are standing 

behind semiconductor sequencing: during amplification, integration of dNTPs is accompanied 

by secretion of pyrophosphate and hydrogen ion that is charged positively. Semiconductor chip 

is filled with microwells that contain previously prepared single-stranded template DNA 

molecules. During sequencing, solutions containing (separately) A, T, C, or G bases, flow 

through microwells along with polymerase activation. When dNTP is incorporated and 

positively charged hydrogen is released, then the bottom layer of the chip detects this signal, 

since underneath the microwell surface, an ion sensitive layer is placed. Hydrogen ion release 

change the pH of the solution in microwells. This is detected by ion-sensitive transistors, and 

information is related to the type of nucleotide that has been used in the flow. Sequencer than 

washes out unincorporated dNTPs and the next flow is applied (Goswami & Sanan-Mishra, 2022; 

Gupta & Gupta, 2014).  

At the beginning of this technology development, Ion Torrent sequencers allowed for 50 base 

pairs long reads with 100 Megabases detectable in one run. Recent machines that use this 

technology allow for 600 bp-long reads and about 50 Gigabases yield (109 base pairs). 
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Currently, the time consumed by sequencing depends on the size of the used chip (Cheng et 

al., 2013; Katsnelson, 2010; Y. Wang, Wen, et al., 2014).  

What makes Ion Torrent technology unique is not only the way of pH measurement, but the 

process that precedes sequencing. Preparing of microwells requires a specific type of PCR 

called emulsion PCR. In this process, oil and microbeads are added to the reagent mixture in 

order to create billions of microbeads-containing water droplets separated by oil fraction 

(emulsion). These microbeads anchorage single strain DNA fragments. These fragments are 

amplified in emulsion PCR reaction to produce many thousands of amplified DNA molecules 

of the same type (sequence) on one bead. This large number of resulting readable strands will 

help to avoid reading errors using bioinformatics techniques. Prior to placing chips into the 

instrument, beads are applied on the chip, where only one bead covered by a single DNA strand 

of the same origin is supposed to be placed in one microwell. This is required for proper signal 

detection (Bertolini et al., 2015). 

Reliability of the instrument was confirmed in 2014 when for the first time Ion Torrent 

Personal Genome Machine was approved by the U.S. Food and Drug Administration for 

clinical use. It enabled medical laboratories to implement Next-Generation Sequencing into 

their routine work. In the beginning of new era of sequencing, Ion Torrent was known for its 

advantages like rapidity and relatively low operating cost. Despite the fact that speed of 

sequencing is limited by the time of solution flow, sequencing can be monitored in real time. 

Unfortunately, ion conductor sequencing has significant problems when it has to deal with 

homopolymers. Then, in one cycle the change of the pH is greater than usual and it generates 

significantly stronger signal. The longer a homorepeat is, the more difficult to estimate its 

length. In some application the limited length of reads could be a problem as well, since even 

with the most advanced chemistry and chips it can only be approximately 600 bp. For this 

reason, calculating sequence coverage during experiment design is more challenging (Bertolini 

et al., 2015; Y. Wang, Wen, et al., 2014).  

8.7. Sequencing by synthesis – Illumina variation 
 

Illumina technology has its roots is in mid 1990s in the United Kingdom. That time scientists 

in Cambridge for the first time observed fluorescently dyed nucleotides. First, they wanted to 
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observe motion of the polymerase. Eventually they came up with an idea that their technology 

could be used in DNA sequencing, so they decided to form Solexa company in 1998. Soon, 

they brought their technology to the point where they were able to sequence a full genome of 

bacteriophage phiX-174 using only their instruments; this phage DNA is still used to calibrate 

sequencers based on this technology. Their first commercial instrument called “Solexa 

Genome Analyzer” was presented in 2006. It was a milestone in human genome sequencing. 

For the first time, in one experiment, researchers could obtain up to 1 Gigabase of data. Rapid 

success aroused the interest of other companies and in 2007 Illumina acquired Solexa. Since 

then, companies have advanced their technology to create the most popular DNA sequencing 

platform. In 2019, they presented their recent invention. Nova Seq, which is the most advanced 

sequencer when one takes into consideration data that could be generated by a single run. 

According to the manufacturer, it is able to generate up to 20 Terabases (1012). It is 1666x more 

than the first pyrosequencer could generate ever. This resulted in a significant price reduction 

for the whole human genome sequencing. Now it can be lower that 1000$ (Farrer et al., 2009; 

J. Wu et al., 2012).  

The technology of sequencing by synthesis based on fluorescent dyes remains same, but the 

range of parallelization has changed. The entire process of nucleotide detection in the Illumina 

sequencer takes place on a flow plate, to which short nucleotide sequences are pre-attached. In 

the first step, oligonucleotide adapters are attached by ligation to investigated DNA fragments, 

at both ends. DNA is denatured to single-stranded molecules with ligated adapters and then 

attached to short complementary sequences on the plate. Fragments that are not bound at this 

stage are washed off. Next, isothermal amplification of bound DNA is performed. Process 

consists of cyclic denaturation, attachment of 3'-strand ends to complementary oligonucleotide 

sequences on the plate, and strand extension. The 3' ends of the nucleic acids hybridize with 

adjacent short chains immobilized on the plate forming a characteristic bridge structure. The 

final step is to wash away the double-stranded DNA fragments and attach dideoxynucleotides 

to the 3' ends of the strand. This is to prevent the formation of non-specific bonds during the 

actual sequencing process (Heather & Chain, 2016b; Slatko et al., 2018).  

Sequence by synthesis developed by Illumina is based on optical detection of identified 

nucleotides. It is different than Ion Torrent method which was based on pH changes 
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measurement. Each of the four types of nucleotides has its own unique fluorescent tag. Once 

attached, the fluorophore is excited by a laser and the specific signal is detected. These attached 

fluorescent tags also act as reaction terminators. As long as the fluorophore is not excited and 

dissociated from the nucleotide, it blocks the attachment of subsequent base pairs by its 

presence at the 3' hydroxyl position. This prevents mass attachment of nucleotides before the 

signal is read, and also ensures the synchronous sequencing of DNA fragment simultaneously 

on the flow plate. This reaction is performed repeatedly and simultaneously on all individual 

nucleic acid strands coated on the plate (Besser et al., 2018; Guo et al., 2010).   

8.8. Mobility of sequencing by nanopore 
 

Nowadays, next-generation sequencers have become popular, and they are used on daily 

routine in laboratory work. Nevertheless, they are still physically too big to be used in mobile 

laboratories where samples could not be transported to a regular lab. Concept of a portable 

sequencer was created early in 1989, but the technology at that time was not sufficient to make 

this idea a reality.  

The first working nanopore sensor was described in Nature Nanotechnology in 2001 (J. Li et 

al., 2001). The first functional sequencing with nanopores was completed in March 2011. 

Soon, the first sequencer that fits into the pocket was presented by Nanopore – MinION (Wang, 

Wen, et al., 2014) 

The technology is based on sequencing using nanopores. This solution does not use optical 

system for nucleotide identification. The use of such a solution made it possible to extend the 

length of readouts even to several thousand base pairs and to miniaturize the device to a weight 

of 90 grams. The device contains 2048 sequencing channels inside, each channel can sequence 

one continuous DNA strand at a time. Channels are formed with α-HL which is a membrane 

channel protein. Diameter of approximately 1.4 nm allows only single stranded DNA or RNA 

to be squeezed through the hole. DNA is translocated through pores and characteristic for each 

nucleotide shifts of ionic current is detected by sensors. The lengths, amplitudes, and variances 

of such changes are detected and parametrized. The software recognizes characteristic 

parameters for individual nucleotide sequences and it produces a two-dimensional diagram 

based on the parameters. This is currently the handiest sequencer that also allows to observe 
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the process in the real time able to read strands up to 50 kilobases (Kb) long and with 100 bp/s 

rate. Sample preparation comprise adding adapters that connect to the 3' and 5' ends of DNA 

fragments. They facilitate DNA capture and loading of the process helicase enzyme (Caldwell 

& Spies, 2017; Y. Wang, Yang, et al., 2014). This enzyme executes the unidirectional passage of 

the DNA molecule through the nanopores. This innovative method allows for recognition of 

nucleotide structures; thus, it is also possible to recognize methylated forms of nucleotides. 

With the use of this sequencer, read lengths of up to 50,000 base pairs can be obtained (Lu, 

Giordano, et al., 2016; Madoui et al., 2015; Mikheyev & Tin, 2014). 

Today, space technology has also made significant advances. Since 1998, an international 

space station has been orbiting the Earth. Astronauts are constantly conducting research there 

under supervision of experts on the globe surface. One of the major areas of the research is 

monitoring conditions of microgravity. Microorganisms in the microgravity environment are 

also an important part of space research. Unfortunately, conducting biomonitoring of bacteria 

in space is difficult due to the limited space of the launch modules. A program called 

Microbial Tracking is conducted to assess the microbiological cleanliness of the space station 

modules, as well as the vehicles used to transport people there. DNA sequencing is used to 

monitor the emergence of drug resistance genes in bacteria (Avila-Herrera et al., 2020). What 

is more, DNA sequencing is one of a few experiments which can be performed by the 

astronauts in the space. In 2016, the first sequencer based on nanopore sequencing was 

placed in the vehicle targeted to International Space Station. Soon, astronaut Kelly Rubins 

for the first time performed DNA sequencing outside the planet Earth (Rainey, 2016). 
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Milestones in sequencing and microbiome research are presented on timeline in the Figure 1.  

 

Figure 1. Timeline presents highlights of the sequencing and microbiome research. Figure 

was created using Biorender software.  

8.9. Human microbiota diversity 
 

Microbial Tracking program launched a few years ago by NASA revealed that most of 

microbiota which can be found in space vehicles and modules are most likely derived from 

people who have been working there (Avila-Herrera et al., 2020; Checinska Sielaff et al., 

2019). The boom of discoveries on diversity and abundance of microbes living in human 

bodies have caused problems in nomenclature. There is also a need to discriminate between 

microbiome, as the whole community which consist of microbes and their genes, and 

microbiota, that is taxa that belong to microorganisms. However, in scientific literature, these 

terms are often used interchangeably (Peterson et al., 2009; Ursell et al., 2012).  

It has been estimated that each human is a unique host for 10-100 trillion microorganisms. 

What is more interesting, shotgun sequencing revealed almost 3.3 million non-redundant genes 

only in human gut. Despite of coding regions that could be detected in other parts of body, this 

is over 150x more than entire human genome consist of (approximately 22000) (Abdellah et 

al., 2004; Qin et al., 2010). The vastness and complexity of the human microbiome has inspired 

the idea of considering the microbiota as just another human organ. Notably, microbial 

community in human body has secretory functions, protective functions against infections, 

immunomodulatory effects, and it may have impact even on daily mood(Baquero & Nombela, 

2012; Clarke et al., 2014). One of the most significant discoveries regarding the human 

microbiome was an observation that it is so variable that a specific composition can be 
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attributed to a single individual. Small differences in diet, daily routines, cosmetics, and 

antibiotic usage can significantly change composition of microbes that reside in human body 

(Hasan & Yang, 2019).  

A group of students from Harvard University created a code that was able to recognize around 

80% of individuals only using microbial sequences identified in the individuals. Data used in 

this study was collected within HMP and the group used machine learning algorithms to create 

“microbiota fingerprints” and to identify them in a blank trial (Franzosa et al., 2015).   

The bacterial kingdom is the first that comes to mind when thinking about the human 

microbiome. Other groups of microorganisms, like archaea, fungi and, most importantly, 

viruses are often underestimated. Population-level metagenomics studies identified that human 

gut microbiome consists of approximately 40% of archaea (Franzosa et al., 2015). Some 

researchers propose that properties of Archeones in the gut environment can be used in a 

similar way as we use probiotic properties of certain bacteria(Brugère et al., 2014; Horz, 2015). 

Moreover, human fungal microbiota, sometimes called “mycobiome”, is much less abundant 

than the bacterial one (Shah et al., 2021; Tiew et al., 2020). Common colonization of human 

urogenital tract, oral cavity, and gastrointestinal tract with fungi is widely known. Most of 

them are Candida spp, that often escape immune control and cause infections. These strains 

mostly inhabit human gut or other parts of the body with mucosal surfaces. Usually, Candida 

spp. remain undetected and does not cause any pathological symptoms. This may change when 

the sites it inhabits become inflamed, or the body struggles with immunosuppression for an 

extended period (Fidel, 2002; Huffnagle & Noverr, 2013; Sogin et al., 2006).  

Identification of microbiotic fungi is different to that of bacteria. They do not code for 16S 

rRNA genes, so identification can be done by amplification of Internal Transcribed Spacer 

region (ITS2) which is the genetic marker of fungi, or by shotgun metagenome sequencing 

with whole genome analysis (Donovan et al., 2018; Huffnagle & Noverr, 2013; van Tilburg 

Bernardes et al., 2020).  

The least identified though the most abundant part of microbiota are viruses called virome. 

Importantly, viruses infecting human cells are not a major part of the virome. Human virome 

contains viruses that infect other microbial components such as bacteria (infected by 

bacteriophages) or archea, and viruses consumed with food (only temporarily in human body). 
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These viruses can be either RNA or DNA (double- or single-stranded). Their diversity includes 

both morphology, coding genes, and genome size (Liang & Bushman, 2021). Most viruses that 

can be found in human body belongs to bacteriophages (phages). Each bacteriophage infects 

only its specific bacterial host, which makes them an excellent weapon against bacterial 

pathogens that could break homeostasis – microbiota balance. About 2500 different virus-like 

particles were identified in the gut, but possibilities of robust identification are still very limited 

(Federici et al., 2020) Unfortunately, most of phage sequences are not annotated in databases, 

and thus they cannot be identified in metagenome screening studies. The major difficulty in 

identifying viral communities is the fact that they do not have a universal genetic marker such 

as 16S rRNA gene in bacteria, or ITS in fungi. It is necessary to perform whole genome 

sequencing and assembly to be able to define which virus has been detected. The other 

challenge results from phage ability to multiply in two separate cycles – lytic and lysogenic. 

Lysogenic phages can be present in microbiota, but ‘hidden’ in the form of prophages 

incorporated into bacterial genomes (Federici et al., 2020; Liang & Bushman, 2021).  

8.10. Human microbiome diversity 
 

Hypocrates claimed that “All diseases begin in the gut”, and this statement can today be linked 

to microbiome. One of the major microbial communities in human body resides in the human 

gut. Microbiome communities inhabiting our body are not only diverse among human 

individuals, but human body provides various environments (niches) where conditions are 

different. It results in completely different composition of microbes that inhabit different body 

sites. Deep 16S rRNA gene sequencing revealed that bacteria play an important role in the 

proper functioning of organs where the presence of bacteria is not intuitive. For instance, such 

a distinctive organ as the human eye also has its own characteristic set of microorganisms. 

Conjunctival swabs and NGS sequencing delivered proofs that eye was inhabited with a vast 

number of microbes that had not been described before. Bacterial community is represented in 

that part of eye by core genera such as Pseudomonas, Propionibacterium, Bradyrhizobium, 

and others(Q. Dong et al., 2011). The presence of bacteria in the human urinary tract is an 

important parameter determined during the examination. Although the presence of bacteria in 

the bladder has been linked only to infections, it has been proven that their presence in the 

urogenital tract is normal. This part of the microbiome evolves with a person's age and lifestyle. 
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Bacterial communities exist there in homeostasis. Moreover, most of the composition of 

urinary tract microbiome consists of bacteriophages (Perez-Carrasco et al., 2021). Upper 

reproductive tract of woman is colonized by microorganisms as well. This site considered for 

a long time as completely sterile is significantly more diverse than skin and UTI surface 

(Franasiak & Scott, 2015).   

Two major body sites that are niches for the human microbiome are skin and gastrointestinal 

tract. Skin is colonized by microbiome from the beginning of human life. First microbiota is 

transmitted from mother during birth and further developed during breastfeeding. 

Microorganisms can colonize whole skin and they have crucial impact on shaping tolerance of 

T-cells to further commensal microbe presence. Interruption of that process may have serious 

health consequences manifested during growing up and ageing (Nagao & Segre, 2015; 

Scharschmidt, 2017; Scharschmidt et al., 2015). Investigation of human skin microbiome allowed 

for distinguishing 20 different sites of the body where configurations of bacterial fractions 

were significantly different (Dréno et al., 2016; Grice & Segre, 2011). Major condition that affects 

diversity and abundance of human skin microbiota is pH (ranging from 4.2 on pale skin to 6.25 

on soles), temperature, and humidity. What is interesting, although the skin is exposed to many 

external factors that can be potentially bacteriostatic, these are of no significance for the 

bacterial fractions that make up the microbiome (Grice & Segre, 2011; Oh et al., 2016).  

One of the most common examples of a skin disease directly related to a commonly occurring 

microorganism is acne. Propionibacterium acnes was for a long time considered as a major 

factor that cause skin disease. Nevertheless, recent studies show that the lack of bacteriophages 

specific to P. acnes may be involved too. Because of ability to control the abundance of that 

anaerobic bacilli bacteriophages specific to P. acnes may have influence on host’s skin 

condition. Their presence maintain skin in better condition and prohibit expansion of P. acnes 

colonies. (Barnard et al., 2016; Ellis et al., 2019; J. Liu et al., 2015). Other bacteria that may 

have serious effect on skin condition are Staphylococcus epidermidis and Malessezia sp. that 

were considered commensal for a long time. Nevertheless, recent studies demonstrated that 

they are able to cause difficult skin infections (Akaza et al., 2016; Nishijima et al., 2000). 

Staphylococcus aureus which is an important element of skin microbiome in many individuals 
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can be linked to atopic dermatitis. Its presence on skin correlates to increased inflammation 

and severity of that disease(Ellis et al., 2019). 

A few studies demonstrate that improper condition and composition of skin microbiome in 

early years of human life may result in eczema, rosacea, and psoriasis occurrence (Assarsson et 

al., 2018; Ellis et al., 2019; Grice & Segre, 2011; Whitfeld et al., 2011). While Eli Metchnikoff 

proposed drinking sour milk to keep condition of the whole body, using probiotics on human 

skin can prevent or reduce the probability of developing skin disease. It is known that even 

oral treatment with Lactobacillus johnsonii can improve immune functions of skin. Probiotics 

may affect toll-like receptors which can prevent atopic dermatitis (Assarsson et al., 2018; Ellis 

et al., 2019; Roudsari et al., 2015). From the perspective of microbime research, the most 

interesting is the GI tract. Depending on the part of this system, we can identify different 

communities of bacteria living there. It was first discovered in the 18th century by the 

aforementioned Leeuwenhoek, who examined material taken from the stools and mouths of 

patients suffering from various diseases (Bardell, 1982). In the oral cavity, where the GI tract 

has its beginning, most identified microbes are usually transient biota. These microbes come 

from food and inhaled air. Due to the conditions in the oral cavity, it is inhabited by 

predominantly aerobic microorganisms. Within the oral microbiome, several niches can be 

distinguished that are characterized by different living conditions for microbes: buccal 

epithelium, maxillary anterior, tongue dorsum, tonsils or tooth surface. Most of them are 

inhabited by microbes that belong to genera like Gemella, Granulicatella, Streptococcus and 

Veilonnella.  Around 700 species of bacteria were identified and detected there (Deo & 

Deshmukh, 2019). One should not forget about communities that are not members of the 

Prokaryote clade. These include Candida, Aspergillus Saccharomycetales and Fusarium 

(Sharma et al., 2018). Pre-digested and chewed food is moved to the stomach. Bacterial 

communities often exist in the oral cavity in the form of biofilm to prevent the transition to 

more unfavorable conditions of the human stomach (Kilian et al., 2016).  

Stomach for long was considered sterile because of its internal conditions. Gastric juice makes 

it extremally hostile to any life forms. This solution consisting of hydrochloric acid and pepsin 

(enzyme endopeptidase) with pH reaching 1.7 (Dressman et al., 1990). However, some 

microbes including viruses are able to create a core community that inhabits that organ. 
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Researchers revealed presence of Firmicutes, Bacteroidetes, and Actinobacteria which 

dominate gastric mucosal samples. One of the most recognizable species is Helicobacter 

pylori. (Nardone & Compare, 2015b; Z. Wang et al., 2020; Y. Yang et al., 2021). Some studies 

suggest that microbiota found in the stomach is transient only. Its presence is related to a diet 

and dependent on food that comes through esophagus. Bacteria take advantage of the fact that 

the pH of gastric juice varies. It is different before and during a meal. When food enters the 

stomach, the pH temporarily rises, and this also provides an opportunity for the bacteria to 

have a limited hold on the stomach mucosa (Nardone & Compare, 2015b; I. Yang et al., 2013). 

Bacteria also take advantage of any decrease in immunity and irritation within the stomach.  

Inflammation of the gastric mucosa enforce the use of gastric juice neutralizers or blockers. 

This creates very favorable conditions for colonization by microorganisms. Studies have 

shown that an increase in pH is clearly correlated with the diversity of microbiota that we can 

identify in the stomach. These studies have confirmed this phenomenon in both adults and 

children. Proton pump inhibitors, which are routinely used to treat reflux and inflammatory 

gastric disorders, significantly increase the diversity of the microbiome that can be identified 

in stomach (del Piano et al., 2012, 2014) (description of stomach microbiome is further 

developed in the section “Specific microbiome of stomach”). 

Behind the pyloric region of the stomach there is the duodenum – the first part of small 

intestine. Studying the small intestine microbiome is difficult due to the fact that it is difficult 

to obtain samples directly from this organ. The largely digested food particles coming from 

the stomach are mixed in the duodenum with other digestive solutions from the pancreas and 

liver. Also, partial absorption of water and nutrients is started there. Approximately 60% of 

the genera’s Operational Taxonomy Units (OTUs) identified in that part of GI consist of 

Streptococcus, Actinomyces, Propionibacterium, and Granulicatella. In duodenum, 

microorganisms have to contend with peristaltic movements, active enzymes, and limited 

access to oxygen(Angelakis et al., 2012, 2015).  

Bacterial density is significantly higher than in stomach, but it represents only a fraction of 

what can be found in further sections of the intestine. As with the stomach, transitional 

microbiota predominates duodenum. Peristaltic movements strongly contribute to that, as 

shown in an experiment where bacterial colony-forming units sampled from different parts of 
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the small intestine differing in the dynamics of these movements were compared. In the ileum 

the number of detectable bacteria was several orders higher (Hayashi et al., 2005; Kastl et al., 

2020).  

Distal sections of the GI tract include the large intestine, which is the most often investigated 

in terms of microbiome composition. Peristaltic movements slow down there and the final 

absorption of water from the consumed food takes place. The diversity of bacteria identified 

in large intestine is the highest within the human body. Bacteria found in this section of the 

digestive tract have been found responsible for a myriad of health conditions in our bodies. For 

instance, the gut-brain axis has been demonstrated, that is, human microbiota can affect brain 

functions via secretion of several different compounds. Interactions can be mediated through 

the immune system, tryptophan metabolism, or the secretion of bacterial metabolites such as 

short-chain fatty acids, amino acids, or peptidoglycan, and others. The composition of 

microbiota in the gut and the resulting profile of microbial products that are secreted may play 

a role in conditions such as autism, overweight, schizophrenia, Parkinson's disease, and 

Alzheimer's disease. This part of the digestive system has even been a subject of its own variant 

of the Human Microbiome Project - the American Gut project and the British Gut project, that 

are directed solely at studying diversity in large intestine (McDonald et al., 2018; Savio et al., 

2017).  

Colonization of the gut begins shortly after birth, where the mother's microbiota is passed on. 

This is influenced by the way a person comes into the world. The consequences of cesarean 

delivery for microbiome composition can be detected even in adults. It results in lower 

representation of probiotic bacteria and lower abundance of Bacteroides species eventually 

causing gut homeostatis disorders. Increased population of Enterobacteriaceae lead to 

enhanced lipopolysaccharide (LPS) production. Inappropriate exposure for microbial factor is 

correlated with development of asthma during growing up in children (Cryan et al., 2019; 

Hemarajata & Versalovic, 2012; G. Kim et al., 2020; Lyon, 2018). Gut is also a home for the 

largest portion of microorganisms known as probiotics. They are responsible for maintaining 

homeostasis in the intestine. A balance of microbial fractions should be achieved, where no 

fraction overgrowth others. Overrepresentation of one particular microbial fraction can lead 

for instance to irritable bowel syndrome or inflammatory bowel disease. Application of 
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probiotics has a positive effect on controlling symptoms of the aforementioned conditions. A 

chronic dysbiosis in the gut leads to a chronic inflammation. This may further induce formation 

of colorectal cancer (Hemarajata & Versalovic, 2012).  

8.11. Specific microbiome of stomach 
 

In 1982, Robin Warren and Barren Marshall raised doubts on the sterility of human stomach. 

Campylobacter pyloridis, renamed two years later to Helicobacter pylori, is able to survive 

and colonize such challenging environment as stomach. This environment conditions are 

determined by presence of gastric juice with one of the lowest pH levels found in animal 

bodies, thickness of the mucus layer, and presence of gastric peristalsis. Moreover, microbiota 

in the mouth convert the nitrogen in food and saliva into nitrite; the process is mediated by 

bacteria from Lactobacilli genus. When nitrites come into interaction with gastric juice, they 

are converted into a powerful antibacterial compound, nitric oxide. H. pylori developed several 

capabilities which allow for colonizing of stomach. One of the best-known adaptations is 

mediated by the enzyme urease, much more efficient than development cell walls tough 

enough to resist the low pH in the stomach. Around 10% of all produced proteins in H. pylori 

cells is intracellular urease. The bacterium has the unique ability to change pH of the 

environment, since the enzyme catalyzes the reaction of hydrolytic degradation of urea to 

ammonia and carbon dioxide. Molecules of the urease can increase periplasmatic pH and 

membrane potential. Urea which is a direct substrate for the enzyme is acquired through the 

bacterial inner membrane. One of the functions attributed to this protein is also interaction with 

human cells that may be crucial in colonizing the gastric mucosal layer. It has been shown that 

the urease enzyme also has a pro-inflammatory activity and exerts inactivating effects on 

neutrophil cells (Baj et al., 2020; Hathroubi et al., 2018).   

Coding of urease is not just assigned to Helicobacter pylori. Other transients that are a part of 

the gastric microbiome also benefit from the utility of this enzyme. Morganella morgani and 

Yersinia enterocolitica are pathogens that are able to survive for a longer period of time in an 

acidic environment. They also use urease to change the environment to a more alkaline (Uberti 

et al., 2013; Young et al., 1996). 
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The hydrolysis of urea by urease changes the consistency of the gastric mucosal layer. It 

converts to a more mucous-like consistency, which makes it easier for bacteria to shuffle 

through. The consistency of the mucus changes when pH rises above its normal pH 1-2. 

Helicobacter pylori has a spiral shape that allows it to move faster in the conditions it creates. 

In addition, this bacterium also has a flagellum made up of two subunits, being long in relation 

to the cell length. Usually, the cell has 2 to 6 flagella, and they are activated by contact with 

an acidic environment. Thanks to these adaptations, H. pylori is able to migrate faster into the 

gastric mucosal layer and to start its colonization. Environmental stress conditions affecting 

bacteria residing in the stomach can lead to damage of genetic material and thus prevent 

colonization. H. pylori through homologous recombination is however able to repair DNA 

damaged by low pH and oxidative stress. Its genome also encodes a number of proteins such 

as RecA, which attach to the DNA strand and mediate its repair (Clyne et al., 1995). 

Lactic acid bacilli that have also been identified as a part of the gastric microbiome have also 

developed ability to survive in the unfavorable environment of gastric pH. The pH tolerance 

of these microorganisms depends on the range of the pH gradient between the extracellular 

and intracellular environments. When this difference exceeds a certain acceptable value, the 

bacterial cells die. Gram-positive bacteria use a mechanism based on the F0F1-ATPase that 

increases the intracellular pH under stressful conditions for the cell. This mechanism is 

activated at the transcriptional level (Deckers-Hebestreit & Altendorf, 1996). Enzyme takes part 

in changing transmembrane ion gradient due to high concentration of ATP in prokaryotic cell. 

It makes inside of the bacteria more resistant for outside changing ion potential. Increased pH 

tolerance among these microorganisms in the presence of simple sugars has also been 

documented. This causes these bacteria to have the best chance of surviving in gastric juice 

conditions when the pH is higher due to food intake or inflammation occurrence 

(Charalampopoulos et al., 2003).  

Escherichia coli has also evolved its unique ability to avoid the negative effects of low pH in 

the stomach. This bacterium is able to rearrange lipids in the outer membrane, leading to 

increased tolerance to this stress factor(Foster, 2004; Lund et al., 2014; Y. Xu et al., 2020). 

Salmonella enterica serovar Typhimurium is a pathogen which infection begins with the 

ingestion of contaminated water or food. It is identified as a transient microbiota in the 
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stomach. Among the many virulence factors present in this bacterium are those that allow it to 

survive neutralization by gastric juice in the stomach during the initial stages of digestion. S. 

enterica has a system of defense against acidotic stress based on decarboxylation of arginine, 

lysins, and ornithine. This system is however less efficient in the absence of atmospheric 

oxygen. Brucella spp belongs to gram-negative intracellular pathogens that can be present in 

stomach microbiome. These bacteria are linked to food production and processing, often 

transmitted from animals to humans through consumption of unpasteurized milk and 

contaminated dairy products. Brucallae is equipped with the low pH defense systems similar 

to those in other pathogens. It has the ability to produce urease, like H. pylori, however there 

is no information about its intracellular activity. It is also protected by a decarboxylation-based 

system similar to Salmonella (Xu et al., 2020).  

Streptococcus spp. is most abundant in microbiota in oral cavity, which makes these bacteria 

natural inhabitants and permanent colonizers of the stomach environment. They produce active 

F-ATPase that enable to alkalize the surrounding environment. Streptococcus spp. have 

specific sites in their genome that directly protect DNA strands from degradation due to 

exposure of the cell to low pH. These bacteria have a system for transporting potassium ions 

to cells, which allows them to maintain ion balance when the pH gradient between the inside 

and outside of the cell becomes too high (Quivey et al., 2000; Sheng & Marquis, 2006).  

In the analysis of surviving elements of the stomach microbiome, the most numerous group - 

viruses - must be considered as well. Viruses do not demonstrate similar (to bacterial) 

adaptations to persist in the stomach environment. However, in their genomes, they code 

factors that make it easier to survive those difficult conditions. Most of Caudovirales, the most 

abundant group of phages, cannot stay active when pH in the environment drops below 4. 

Examples of exceptions are M13 and T1 phages specific to Escherichia coli. They withstand 

pH as low as 2 and 3 respectively. Bacteriophages have also the possibility to survive harsh 

environmental conditions inside bacterial cells as an incorporated part of the genome 

(prophage), or a plasmid, when entering other life cycles than a lytic one. In terms of phage 

therapy bacteriophages are expected to persist active in various environments, including these 

with low pH. Currently researchers’ efforts are directed to investigate molecular mechanism 
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of phage resistance to difficult conditions in stomach (Jończyk et al., 2011; Nobrega et al., 

2016). 

8.12. Human genome effects on microbiome 
 

Human microbiome consists of an enormous number of genes coded by all of microorganisms 

inhabiting all body sites. Nevertheless, genes encoded by the host may interplay with the 

microbiome. The complexity of the environment in which microorganisms live is also shaped 

by genetic determinants. Genome-wide association studies (GWAS) have shown that the 

human genome may contain 4.1 to 5 million different variants, more than 99% of which are 

Single Nucleotide Polymorphisms (SNPs) and indels. NGS sequencing techniques have 

enabled multiomic studies of potential influence of human genome on profiles of human 

microbiome. To design an experiment that examines possible relations between bacterial 

fraction occurrence and hosts’ SNPs profiles, one must consider the complexity of the data to 

be analyzed. Demographics can also shape the microbiome. Gender, age, and geographic 

origin of studied individuals must be considered.  

Symbiosis of humans with microorganisms is beneficial in many ways, among others, by 

bacterial competition for receptors on human cell surfaces. Due to colonization by commensal 

microorganisms, pathogens have no room to expand their colonies. Considering the importance 

of the microbiome in human life, there is a need to know the mechanisms that determine the 

inhabitation of ecological niches in the human body. Not only from the perspective of bacterial 

adaptation, but also from the position of the host, which creates the conditions of this 

environment. One example of correlation between host genotype and bacteria involves the 

genus Bifidobacterium in fecal microbiota. SNP marked as rs4988235 was identified as 

associated with a lack of lactase and increased abundance of Bifidobacterium in examined 

samples. In this case, it is supposed to have a direct influence on the presence of Bifidobacteria 

(Bonder et al., 2016).  

Another identified human genetic factor that affects microbiota composition is the SLIT3 gene. 

This is a gene that encodes a secretory protein that is responsible for cellular transport. 

Unclassified Clostridiaceae had association with the SLIT3 variant rs10055309 detected in UK 

twins. Upregulation of SLIT3 expression was found associated to colorectal adenomas 
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(Goodrich et al., 2016). Study by Igartua et al. (2017) performed 16S rRNA amplicon 

sequencing of 144 adult Europeans’ microbiomes. They identified 148 653 genetic variants 

among all annotated variants. The showed association between some of them with diagnosed 

diseases. Dermacoccus presence within nasal microbiome was identified in all 144 adult 

individuals of a European population collected in summer and winter months. Identification of 

Dermacoccus was negatively correlated with atopic dermatitis. An association of 

Micrococcacae with a variant of the PGLYRP4 gene was identified. This is the gene associated 

with the immune response to peptidoglycan contained in the cell walls of gram-positive 

bacteria (Igartua et al., 2017a).  

Another study was performed by Dayama et al. (2020) with patients that were diagnosed with 

cysitic fibrosis. That disease is caused by cystic fibrosis transmembrane conductor regulatory 

(CFTR) gene mutations. Reduced expression leads to lack of hydratation in mucus, difficulties 

in respiratory, digestive, and reproductive functions (Dayama et al., 2020). Variants of CFTR 

gene were correlated with decreased abundance of Ruminococcaceace and Butyricimonas. 

These groups of bacteria are considered as butyrate producing microbes. While, on the other 

hand Actinobacteria and Clostridium were more abundant than in healthy individuals. Butyrate 

promotes bacterial growth, and it also is an anti-inflammatory agent. In the intestine, butyrate 

plays an important role in maintaining homeostasis (Dayama et al., 2020). 

One clue that the human genome influences the microbiome that resides in the body was a 

study involving related family members. In that study, Lee et al. (2011) compared the fecal 

microbiota from twins living in Korea and the United States. The results showed that there 

were significant geographic differences. Nevertheless, authors revealed that differences 

between continent fractions were same as between monozygotic and dizygotic tweens living 

on different continents (S. Lee et al., 2011).  

Data left behind by the Human Microbiome Project were analyzed for possible correlations of 

the microbiome with the genome of the carriers studied. Bioinformatics analysis revealed an 

association between the FUT2, functional lactase gene (LCT) and the presence of 

Bifidobacterium longum. Publicly available databases were searched for genetic profiles where 

the host was fucosylotrasferase secretor genotype. Linear regression revealed that B. longum 

had the strongest correlation. Individuals without premature stop codon in FUT2 gene were 
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characterized by significantly increased abundance of that bacteria. Very similar effect was 

observed according to LCT. This gene is responsible for lactase coding in human gut. Lactase 

production is regulated by allele in rs4988235 close to LCT. Latest findings have shown that 

a diary rich diet is correlated positively with hypolactasia gene variant and Bifidobacteria 

abundance in human gut (Kato et al., 2018; Kolde et al., 2018a).  

Genome wide studies included individuals from norther Germany was performed by Wang et 

al (J. Wang et al., 2016). Authors examinated taxa derived from metagenomic analysis with 

multiple genetic loci. They described association between gene with Porphyromonadaceae. 

This gene is responsible for one of the proteins that belongs to glucose transporter family. It 

plays a crucial role in maintaining glucose homeostasis. What is more, they identified that 

(rs62295801) is correlated with Lactobacillales which can potentially affect response to 

vitamin A and increased liver cholesterol level. These rod-shaped bacteria are mostly known 

as probiotic. They are permanent inhabitants of human gut. Beta-diversity between 1812 

individuals from Northern German was analyzed and did not show any significant results 

above satisfactory threshold. This allows for a hypothesis that presence of genetic variants 

encoding Vitamin D receptor (VDR) are not related to the abundance of detectable bacteria. 

Nevertheless, VDR gene locus was associated with increased abundance of Parabacteroides. 

These are gram negative, anaerobic that colonize GI tract. Species from that type are related to 

inflammation, autoimmune disorders and autism spectrum disorders (Ezeji et al., 2021; J. 

Wang et al., 2016). 

9. Materials 

9.1. Samples collection from human participants of the study 
 

Patients underwent gastroscopy by gastroenterologists working at the Regional Specialized 

Hospital in Wroclaw. Two qualified surgeons participated in the project: Jan Gnus, MD PhD 

and Stanisław Ferenc, MD PhD. Sample collection started on 30.01.2018. They were collected 

during endoscopy examination by the physicians in the Endoscopy Department of Regional 

Specialist Hospital in Wroclaw. Prior to the examinations, patients consented to the use of 

biological samples collected from them, and gave interview on chronic diseases, medtications 

they were taking, and on antibiotics use during recent 6 months. Specimen was taken from the 
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pyloric part of the stomach. That specific place was chosen according to available literature 

that indicates it as the most inhabited by microoroganisms part of human stomach and this area 

is recommended for diagnostics of Helicobacter pylori infection (Bayerdorffer et al., 1989). 

Two separate specimens were taken from each patient, blood samples were collected for 

further SNPs analysis. One was proceeded to histological examination to evaluate parameters 

according to Sydney scale. The project was completed under approval of the bioethical 

committee (Komisja bioetyczna przy Wojewódzkim Szpitalu Specjalistycznym we Wrocławiu 

Ośrodek Badawczo-Rozwojowy).  The project approval number is KB/nr 8/rok 2017.  

Patients’ data were derived from the interview and from medical database Asseco Medical 

Management Solutions (AMMS). The data that were obtained in this way are: age, gender, 

chronic diseases affecting the patient, medications taken permanently, antibiotics, drugs from 

the group of proton pump inhibitors, Pandas version 1.4.2 was used on sheets to construct 

conditional and pivot tables. Numpy was used for array analysis in numerical data (Harris et 

al., 2020). Scikit-bio – python package with algorithms, and resources for bioinformatics was 

used for index calculations. 

9.2. DNA isolation for NGS sequencing 
 

Each sample collected from a patient was immediately placed in PBS and forwarded for 

separate viral and bacterial DNA isolation. Specimens in PBS were floated on 3D shaker for 

3h in 4 Celsius degrees and centrifuged for 10 000 RPMs for 10 minutes. Supernatant was used 

for further bacteriophage separation and pellet was proceeded to bacterial DNA isolation with 

Micro Beat Bead Gravity AX kit (A&A Biotechnology). Bacteriophage separation was 

performed with cesium chloride (CsCl) ultracentrifugation as follow. Supernatant was filtered 

through 0.22μm pore membrane and then loaded on CsCl gradient. CsCl density gradient 

ranged from the highest density 1.7g/ml, followed by 1.5 g/ml, 1.35 g/ml and 1.15 g/ml 

(scheme is presented in the Figure 1.). Centrifugation was performed overnight at 62 000 g at 

4 Celsius degrees in a swinging bucket rotor. Half a milliliter of content between 1.35 and 1.5 

of CsCL solution was collected with a syringe for further phage DNA isolation. DNA isolation 

was performed with Sherlock AX (A&A Biotechnology) kit. Samples were proceeded to 

Genomiphi V2 DNA Amplification (Cytiva). Human genomic DNA was isolated from 

collected blood samples using Genomic Micro AX Blood Gravity Kit (A&A Biotechnology). 
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DNA isolated from biopsy samples using the Micro Beat Bead Gravity AX Kit (A&A 

Biotechnology) was proceeded for bacterial DNA sequencing. DNA samples isolated from 

human blood using Sherlock AX (A&A Biotechnology) were forwarded to Ampliseq – SNP 

sequencing. DNA obtained from biopsy samples and ultracentrifuged were proceeded to 

Shotgun sequencing for Phageome investigation. 

 

Figure 2. Scheme of the ultracentrifugation tube with CsCl 

gradient layers loaded on; arrow indicates bacteriophage 

fraction location 

 

 

 

 

 

9.3. Library preparation for 16S rRNA sequencing.  
 

Initially, DNA isolated in the previous step was quantified using Qubit 2.0 with dsHigh 

Sensitivity Assay Kit (Thermofisher). Minimum concentration of DNA that was necessary for 

further steps (no less than 2 ng/μl) was achieved in 144 samples (out of 145 samples processed), 

these samples were proceeded for further analysis. Amplification of 16S rRNA regions were 

performed with Ion 16S Metagenomics Kit (Thermofisher). It contains 2 sets of primers that 

cover V2, V3, V4, V6, V7, V8 hypervariable regions. Specific Environmental Master Mix 

which is a part of the assay provides conditions to perform PCR even with a high concentration 

of PCR inhibitors. Amplified DNA was purified with AMPure XP Reagents (Beckman) – 

silicone magnetic beads. DNA fragmentation was done with Ion Plus Fragment Library Kit 

(Thermofisher). Purified DNA was measured again with dsHigh Sensitivity Assay kit on Qubit 

2.0 fluorometer. Amount of DNA recommended by the manufacturer was used for library 

preparation according to manufacturer’s instructions. For the purpose of sample pooling 
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oligonucleotide barcodes were included into the library preparation; Ion Xpress Barcode 

Adapters kit (Thermofisher) was used as recommended for enzymatic fragmentation with Ion 

Plus Fragment Library Kit. The final concentration of libraries was measured with Ion 

Universal Library Quantification Kit (Thermofisher) using BioRad CFX386. Prepared library 

was stored in -20 Celsius degrees. 

9.4. Library preparation for phageome sequencing 
 

Eluted DNA was quantified using Quantus Fluorometer with QuantiFluor ds DNA system kit. 

Minimum concentration of DNA that was considered as sufficient was 1 ng/μl Samples with 

concentration lower than mentioned were discarded. Purity of isolated DNA was estimated 

using DeNovix spectrophotometer. Absorbance 260 / Absorbance 280 ratio was calculated to 

identify contaminations which absorb UV light e.g., proteins, organic solvents. As the quality 

requirement, DNA concentration in eluted solution should be higher than 1 ng/μl. Out of 140 

isolated viromes, 99 met that requirement and they were proceeded to amplification and library 

preparation. DNA amplified by GenomiPhi V2 DNA Amplification Kit (Cytiva Life Sciences) 

was finally quantified using Quantus Fluorometer and QuantiFluor dsDNA Kit (Promega). 

Illumina DNA Prep (Illumina) was used to prepare sequencing libraries. It was chosen because 

of its specification that includes broad DNA input range and applicability for both short and 

long sequences. All samples were barcoded using Nextera DNA CD indexes (Illumina). Final 

concentration of libraries was calculated using Quantus Fluorometer results. Prepared libraries 

were stored in -20 Celsius degrees. 

9.5. Library preparation for Single Nucleotide Polymorphisms sequencing 
 

Quantitation of DNA isolated from blood cells was performed using Qubit 2.0 with ds High 

Sensitivity Assay Kit (Thermofisher). As a minimum requirement, concentration of DNA as 1 

ng/μl was set Samples with human DNA concentration lower than required were discarded. 

Samples which absorbance ratio 260/280 did not amount to ~1.8 were discarded due to residue 

protein contamination. 111 (out of 141) samples remained after quality control using DeNovix 

spectrophotometer. A custom Ampliseq panel was designed using Ion AmpliSeq Designer and 

ordered as Ampliseq Custom Panel (Thermofisher). It contained 218 SNP targets within 181 

different amplicons (Supplementary material 1). Targets were designed using Ion Ampliseq 
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Designer. For the amplification of dedicated regions Ion Ampliseq Library Kit Plus 

(Thermofisher) was used according to manufacturer’s instructions. Amplified DNA was 

purified with AMPure XP Reagents (Beckman) – silicone magnetic beads. DNA fragmentation 

was performed using Ion Ampliseq Library Kit Plus. For the purpose of sample pooling 

oligonucleotide barcodes were included into the library preparation: Ion Xpress Barcode 

Adapters kit (Thermofisher) was used. The final concentration of libraries was calculated using 

Ion Universal Library Quantification Kit (Thermofisher) with BioRad CFX386. Prepared 

library was stored in -20 Celsius degrees. 

9.6. Ion Torrent Sequencing 
 

Quantified libraries were proceeded to emulsion PCR using Ion One Touch 2. Amount of 5 μl 

was taken from each sample and pooled into one 0.2 ml tube (Thermofisher Scientific). 

Reagent mixture for emulsion PCR contained Ion PGM Hi-Q regent Mix, Hi-Q Enzyme Mix, 

and Ion Hi-Q ISPs. Whole volume of the freshly prepared mix was poured on Ion One Touch 

Reaction filter and placed into the dedicated device. Emulsion PCR was performed with 

assisted option and with use of Ion PGM Hi-Q OT2 Kit -400. Enrichment part of the process 

was run using automated Ion OneTouch ES. This part of the process was done same way for 

16S rRNA and for Ampliseq samples. 

The enriched spheres coated with DNA fragments (prepared as described above) were mixed 

by pipetting and then centrifuged for 4 minutes at 14500 RPM. Supernatant was discarded 

from the pellet so that approximately 27 μl remained in the tube. Two microliters of primers 

were added by pipetting. Sample was placed in thermocycler on a 2-step program – 95 Celsius 

degrees for 2 minutes, followed by 37 Celsius degrees for another 2 minutes. Next, samples 

were set aside to achieve room temperature. In the meantime, “sequencing chip check” was 

performed on Ion Torrent Personal Genome Machine. For 16S rRNA sequencing Ion 316 

Chips were used, while for SNPs detection Ion 318 Chips were used. All the operation with 

the sequencing chip was performed without protective gloves and with proper grounding (as 

recommended). A pre-programmed sequencing plan – “16S rRNA Sequencing” was selected 

on the instrument and manufacturer’s instructions were followed until the chip calibration was 

completed. Sequencing plan involved 750 flows of each ddNTPs through inserted chip. It was 

set to generate reads as long as 400 bps. After sequencing process, basecalling was 
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automatically run. This process was based on translating conducting data collected during 

sequencing into nucleotide-based reads. Once the samples reached room temperature, 1 µl of 

Ion PGM Hi-Q Sequencing polymerase was added. The samples were mixed by pipetting and 

incubated for 5 minutes on the bench. Filling solution was removed from the sequencing chip 

that passed calibration and then the sample was applied on the chip. The chip along with the 

sample was centrifuged 3 times for one minute on a dedicated centrifuge at maximum speed. 

After each centrifugation, the liquid on the chip was pipetted five times. This step was to evenly 

distribute the DNA coated beads in the wells on the chip. After the 3rd centrifugation, excess 

beads and fluid were removed with a pipette. The chip from Ion 318 Chip Kit v2 BC 

(Thermofisher Scientific) was placed inside the Ion Torren Personal Genome Machine. It was 

correctly recognized by the machine, and then after final plan approval, sequencing was 

initiated.  

9.7. Illumina sequencing  
 

Previously quantified libraries were denatured with 1M NaOH (Sigma-Aldrich). Fresh dilution 

of NaOH was used. For the purpose of NextSeq 500/550 Mid Output kit (Illumina) was used. 

Equal volumes of sample and 1M NaOH was incubated for 5 minutes and then followed by 

adding 200 mM Tris-HCL (Sigma-Aldrich) with pH 7. HT1 solution was thawed at room 

temperature. According to manufacturer’s instructions prechilled Hybridization Buffer was 

mixed with the library pool to get total volume of 1 ml. Simultaneously, control library of PhiX 

sequencing Control V3 (Illumina) was prepared and finally mixed with the sample. Final 

loading concentration contained denatured library, denatured control library (PhiX), and 

hybridization buffer. Initialization of NextSeq 550 was fully automated and required pre-run 

cleaning with predefined solutions. Sample was loaded on the cartridge and then putted directly 

into the device. Following instructions were available on touch screen, all of the reagents were 

placed and sequencing was initiated.  

9.8. Files extraction 
 

FASTQ files were downloaded from sequencing devices using software dedicated to Illumina 

and Ion Torrent devices, that is BaseSpace (Illumina) and TorrentExporter (Thermofisher 

Scientific) respectively. Files from IonTorrent PGM were exported as Single End Sequences, 
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thus reads pairing was not applicable. Single End reads are specific for Ion Torrent sequencing 

technology. Illumina sequencing is based on sequencing by synthesis replicating small clusters 

of DNA; during that process “bridges” consisting of double stranded DNA are created. This 

specificity allows for creating Paired End reads. Data were transferred to internal computer 

cluster in Hirszfeld Institute of Immunology and Experimental Therapy using WeTransfer. 

Further Analysis was done according to protocols presented below. 

9.9. 16S rRNA data analysis 
 

To create FASTQ files from 16S rRNA sequencing FileExplorer plugin was used on 

IonTorrent Server. Data was transferred to local computer cluster in the Hirszfeld Institute of 

Immunology and Experimental Therapy. Firstly, FastQC – a quality control tool for High 

Throughput Sequence was used to determine quality of performed runs. This tool has been 

created for screening potential errors in datasets created using NGS technologies. To remove 

low quality sequences from the analysis, Trimmomatic V0.32 was used with minimal length 

of 50 base pairs (bp). Sequence mapping was performed with Kraken2. Kraken2 is a taxonomic 

classification tool which makes use of k-mer matching. This is more efficient and faster than 

classical approach by BLAST algorithm. Database that was used was Kraken Microbial 

database (September, 2018) which involved all of 16S rRNA genes publicly available in the 

public repositories. Report files were subjected to further statistical analysis while output files 

were used for Krona chart creation. This tool creates interactive taxonomic visualization of 

each sequenced sample. To perform all above steps Python 3.6 was used and an individual 

script was created, this script is presented in the Table 1. 

Table 1. An individual script for Python 3.6 used for 16S rRNA data analysis with sequences 

derived from Ion Torrent PGM instrument – Single End Reads saved in FASTQ files. 

import glob,os,subprocess, sys 

from venv import create 

#take first argument in loop 

folder = (sys.argv[1]) 

print(folder) 

#change destination 

destination = "cd {}".format(folder) 

print(destination) 

destinationcommand = subprocess.run(destination,shell=True) 
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def importhomeland(): 

    stream = os.popen('pwd') 

    out = stream.read().strip() 

    return out 

#Change workspace of script 

#execetute commands 

def executecommand(command): 

    subprocess.run(command, shell = True) 

def createfolder(name): 

    if not os.path.isdir(name): 

        os.mkdir(name) 

workspace = importhomeland()+"/"+folder 

dir = os.chdir(workspace) 

print(workspace) 

#make needed folders 

createfolder("trimmed") 

createfolder("outputs") 

createfolder("reportskraken") 

createfolder("Kronacharts") 

#Run Trimmomatic 

for i in glob.glob("*fastq"): 

    samplename = i.split(".fastq")[0] 

    print("Processing_"+samplename) 

    #create command 

    trimmomatic= "java -Xms4g -Xmx4g -jar /home/fagi/trimmomatic/Trimmomatic-0.39/trimmomatic-0.39.jar SE -

threads 32 -phred33 {} trimmed/trimmed_{}.fastq TRAILING:20 MINLEN:50".format(i, samplename)     

    #save trimmomatic output in folder trimmed 

    executecommand(trimmomatic) 

    #commandtrimmomatic = subprocess.run(trimmomatic, shell =True) 

#Run Kraken2 

for i in glob.glob("trimmed/*fastq"): 

    #extract filename 

    trimmedname = i.split(".fastq") 

    #create kraken2 command 

    kraken2 = "/home/fagi/kraken2/kraken2 --threads 16 --db /home/fagi/kraken_microbial  --fastq-input {}  --report 

reportskraken/report_{} --output outputs/output_{}.krona".format(i,trimmedname,trimmedname) 

    #save reports to reportskraken and output for krona in outputs 

    executecommand(kraken2) 

    #commandkraken2 = subprocess.run(kraken2, shell =True) 

#Run Krona Chart Creation 

for i in glob.glob("outputs/*krona"): 

    #extract name for krona 

    krakenname = i.split(".krona")[0].split("_")[1] 

    krona = "/home/fagi/krona/bin/ktImportTaxonomy -q 2 -t 3 {} -o Kronacharts/{}.html".format(i,krakenname) 

    executecommand(krona) 
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    commandkrona = subprocess.run(krona, shell = True) 

 

 

9.10. Viral Data analysis 
 

FASTQ files were obtained by demultiplexing. Data was transferred to local computer cluster 

in the Institute of Immunology and Experimental Therapy. FastQC was applied to detect 

possible low-quality files. Low quality sequences were removed from the analysis by 

Trimmomatic V0.32 (minimal length of 50 bps). Due to significant contribution of human 

DNA, it was removed from analysis by mapping sequences to Human Genome GRCh38 

(GenBank Accession: GCA_000001405.15) and excluding positive hits from further analysis. 

That part of analysis was done using bowtie2. Initially, unaligned sequences were processed 

using Kraken2 aligner, with Kraken Microbial Database (September, 2018). Due to dynamic 

changes in taxonomy annotations related to bacteriophages it turned out to be outdated. There 

was a need to prepare custom database and use another, more customizable aligner. Therefore, 

sequences unaligned to the reference human genome were proceeded to BLAST analysis. 

BLAST algorithm was used along with parameters that allowed 2 mismatches in aligned 

sequence and minimum length of 50 bps. Blast was used locally on the computer at HIEET 

however, the new script was not needed because the cleaned readings from the kraken2 

screening were used for it. Reference for this part of analysis was built from all DNA Virus 

sequences available in public National Center for Biotechnology Information Genomes 

repository. BLAST report files were subjected to further statistical analysis. Python 3.6 was 

used and an individual script was created, this script is presented in the Table 2.  

Table 2. Script in Python 3.6 used for data cleaning and Kraken2 screening analysis for Paired 

End Reads from Illumina sequencing. 

import glob,os,subprocess, sys 

#take first argument in loop 

folder = (sys.argv[1]) 

print(folder) 

#change destination 

destination = "cd {}".format(folder) 

print(destination) 

destinationcommand = subprocess.run(destination,shell=True) 

    #Change workspace of script 
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def importhomeland(): 

    stream = os.popen('pwd') 

    out = stream.read().strip() 

    return out 

#execute commands 

def executecommand(command): 

    subprocess.run(command, shell = True) 

#create folders 

def createfolder(name): 

    if not os.path.isdir(name): 

        os.mkdir(name) 

workspace = importhomeland()+"/"+folder 

dir = os.chdir(workspace) 

print(workspace) 

pathtofagi = "/bighdd/metagenomics/IlluminaSeq/workspace/" 

trimmedpath = pathtofagi+"trimmed_"+folder 

outputspath = pathtofagi+"outputs_"+folder 

reportspath = pathtofagi+"reportskraken_"+folder 

#kronapath = pathtofagi+"Kronacharts_"+folder 

cleanseqpath = pathtofagi+"cleanseq_"+folder 

normalreportpath= pathtofagi+"normalreport_"+folder 

 

createfolder(pathtofagi+"trimmed_"+folder) 

createfolder(pathtofagi+"outputs_"+folder) 

createfolder(pathtofagi+"reportskraken_"+folder) 

#createfolder(pathtofagi+"Kronacharts_"+folder) 

createfolder(pathtofagi+"cleanseq_"+folder) 

createfolder(pathtofagi+"unclassified_"+folder) 

createfolder(pathtofagi+"normalreport_"+folder) 

#Run Trimmomatic 

for i in glob.glob("*R1*fastq"): 

   print(i) 

   samplename = i.split(".fastq")[0] 

   readname = i.split("_")[0] 

   print("Processing_"+samplename) 

   #create command 

   trimmomatic= "java -Xms4g -Xmx4g -jar /home/fagi/trimmomatic/Trimmomatic-0.39/trimmomatic-0.39.jar PE -

threads 32 -phred33 {}*R1* {}*R2* {}/clean_{}_R1.fastq /dev/null {}/clean_{}_R2.fastq /dev/null TRAILING:20 

MINLEN:50".format(readname,readname,trimmedpath,readname,trimmedpath, readname)     

   print(trimmomatic) 

#save trimmomatic output in folder trimmed 

  executecommand(trimmomatic) 

#discard human sequences 

for i in glob.glob(trimmedpath+"/*R1*fastq"): 
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    print(i) 

    trimmedname = i.split(".fastq")[0] 

    print(trimmedname) 

    readname = i.split("_")[2] 

    print(trimmedpath+readname) 

    print(readname) 

    print(cleanseqpath) 

    bowtiediscard = "/home/fagi/miniconda3/bin/bowtie2 --threads 16 --very-sensitive-local -x 

/home/fagi/bowtie2grch38/GCA_000001405.15_GRCh38_full_analysis_set.fna.bowtie_index -1 {}*R1.fastq -2 

{}*R2.fastq --un-conc {}/clear_{}.fastq -S 

/dev/null".format(trimmedpath+"/*"+readname,trimmedpath+"/*"+readname,cleanseqpath, readname) 

    print(bowtiediscard) 

   executecommand(bowtiediscard) 

#Run kraken2 

for i in glob.glob(cleanseqpath+"/*.1.fastq"): 

    #extract filename 

    trimmedname = i.split(".fastq")[0].split(".")[0] 

    outname = trimmedname.split("/")[-1] 

    print(trimmedname) 

    #create kraken2 command 

    kraken2 = "/home/fagi/kraken2/kraken2 --threads 32 --db /home/fagi/kraken_microbial --paired {}*.1.fastq {}*.2.fastq 

--report {}/report_{}".format(trimmedname,trimmedname,normalreportpath,outname) 

    print(kraken2) 

    #save reports to reportskraken and output for krona in outputs 

    executecommand(kraken2) 

 

9.11. Single Nucleotide Polymorphism Ampliseq Data analysis 
 

FASTQ files were generated on IonTorrent server and then exported using FileExplorer plugin 

to computer cluster in the Institute of Immunology and Experimental Therapy. FastQC tool 

was applied to evaluate quality of the results. Low quality sequences were removed from the 

analysis using V0.32 Trimmomatic with minimal length of 50 bp. BWA (Burrows – Wheeler 

Aligner) was used to align DNA sequences to a reference human genome: Human Genome 

GRCh38 (GenBank Accession: GCA_000001405.15) that was indexed with the “bwa index” 

command. Generated Sequence Alignment Map (SAM) files were converted to BAM (Binary 

Alignment Map) with SamTools version 1.14. BAM files were sorted and duplicates were 

marked using Picard. Sorting is a mandatory process that prepares BAMs for next steps of 

analysis. It is a predefined set of CLI (command line) programs that were designed for 

processing of files in formats such as SAM/BAM/VCF BIM Collaboration Format (BCF) tools 
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were designed to perform manipulations on Variant Call Format (VCF). This was the tool that 

was used to transform sorted BAM files to VCF as applicable for further analysis. This step is 

called variant calling which refers to the identification of variants within sequenced data. VCF 

files were further processed with SNPeff (Cingolani et al., 2012) tool which identifies SNPs 

present in sequenced samples. SNPeff includes a very large database of publicly accessible, 

described SNPs, and providing additional information about these SNPs such as functionality, 

assigned gene, or possible association with human diseases. Bash shell was used and an 

individual script was created, this script is presented in the Table 3. 

Table 3. Bash script used for converting FASTQ files derived from IonTorrent PGM sequencer 

to Annotated Variant Call Format (VCF) files for further statistical analysis. VCF format is 

required as an input for further bioinformatic operations. It contains information about 

identified SNPs and their positions in the investigated genome. 

mkdir trimmed 

echo "\e[36m Trimming Started \e[0m" 

for i in *.fastq; 

do 

  sam=$(echo "$i" | rev |cut -d"." -f2- | rev ) 

    echo "$sam" 

    java -Xms4g -Xmx4g -jar /home/fagi/trimmomatic/Trimmomatic-0.39/trimmomatic-0.39.jar SE -

threads 64 -phred33 "$sam".fastq trimmed/"$sam".fastq TRAILING:20 MINLEN:50 

done #cut sequences with trimmomatic 

echo "\e[36m Trimming Done \e[0m " 

mkdir samfiles 

mkdir bamfiles 

echo "\e[36m Human GRCh38 mapping \e[0m " 

cd trimmed/ 

#Check if FASTQ contains more than 100k reads to analyse 

for i in *.fastq; 

do 

    sam=$(echo "$i" | rev |cut -d"." -f2- | rev ) 

    echo "$sam" 

    count=$(echo $(cat $sam.fastq|wc -l)/4|bc) 

    echo "$count" 

    if [ "100000" -gt $count ];then  

        rm "$sam.fastq" 

        echo "removed $sam" 

    fi 

done #cut sequences with trimmomatic  
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for x in *.fastq #Map human genome for SNPs 

do   

    sam=$(echo "$x" | rev |cut -d"." -f2- | rev ) 

    echo "\e[32m Mapping $sam to GRCh \e[0m" 

    bwa mem -t 16 /home/fagi/grch38BWA/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna 

$sam.fastq > ../samfiles/$sam.sam 

done 

cd ../samfiles 

 

#Fixing FLAG 

#for z in *.bam 

#do 

#   sam=$(echo "$z" | rev |cut -d"." -f2- | rev ) 

#   echo "$sam"  

#   samtools fixmate -O bam "$sam".bam fixed"$sam".bam 

#done 

#Sam to bam 

echo "\e[36m SAM -> BAM \e[0m" 

for y in *.sam 

do 

    sam=$(echo "$y" | rev |cut -d"." -f2- | rev ) 

    echo "\e[32m Translating $sam to BAM \e[0m" 

    samtools view -S -b $sam.sam > ../bamfiles/$sam.bam # Translate SAM --> BAM 

done 

#Sorting reads according to chromosome position 

cd ../bamfiles 

echo "\e[36m Sorting \e[0m" 

for u in *.bam 

do 

    sam=$(echo "$u" | rev |cut -d"." -f2- | rev ) 

    echo "\e[32m Sorting $sam \e[0m"     

    #samtools view -hbS - | samtools sort -m 1000000000 - $sam.bam 

    samtools sort -O bam -o sorted"$sam".bam $u 

done 

#Marking duplicates and removing them 

echo "\e[36m Mark Duplicates \e[0m" 

for u in sorted*.bam 

do 

    sam=$(echo "$u" | rev |cut -d"." -f2- | rev ) 

    echo "\e[32m Checking for duplicates in $sam \e[0m"  

    java -jar /home/fagi/picard/picard/build/libs/picard.jar MarkDuplicates I=$u O=Duplicate$sam.bam 

M=Duplicates$sam_metrics.txt REMOVE_DUPLICATES=true 

done 

# samtools faidx /  
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#java -jar /home/fagi/picard.jar CreateSequenceDictionary 

R=GCA_000001405.15_GRCh38_no_alt_analysis_set.fna O=reference.dict 

#Indel Realignment ------- Not needed after last software update 

#echo "\e[36m INDEL Realignment \e[0m 

mkdir ../VCFfiles 

# Basecalling na vcf bam ->> VC 

echo "\e[36m Basecall BCF -> VCF \e[0m" 

for z in Duplicatesorted*.bam 

do 

    sam=$(echo "$z" | rev |cut -d"." -f2- | rev ) 

    echo "\e[32m Basecalling $sam \e[0m"     

    /home/fagi/miniconda3/bin/bcftools mpileup -Ou -f 

/home/fagi/GRCh38SNP/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna $z | 

/home/fagi/miniconda3/bin/bcftools call -vmO z -o $sam.bcf #Variant calling z bcftools 

    echo "\e[32m Filtering $sam and translating to VCF \e[0m"    

    /home/fagi/miniconda3/bin/bcftools filter -i 'QUAL>100' $sam.bcf > ../VCFfiles/$sam.vcf #PHRED 

score filtering  

done 

cd ../VCFfiles 

for z in *.vcf 

do 

    sam=$(echo "$z" | rev |cut -d"." -f2- | rev ) 

    echo "\e[32m Annotating SNPs with snpEff $sam \e[0m" 

    java -Xmx4g -jar /home/fagi/snpEff/snpEff.jar -c /home/fagi/snpEff/snpEff.config -v GRCh38.86 $z 

> Annotated$sam.vcf 

done 

9.12. Data cleaning in Pandas 
 

Data derived from all 3 types of NGS data analysis were transformed into common formats for 

further statistical data analysis. For this purpose, each folder with respective data was merged 

into one comma separated values (csv) file. 16SrRNA data before transformation was saved in 

kraken2 output files containing data on classified microorganisms, accuracy, and counts per 

taxonomy level. Bash shell was used and an individual script was created, this script is 

presented in the Table 4. 

Table 4. Script used for merging 16S rRNA data from kraken2 reports. Jupyter lab software 

was used to perform all actions in cited scripts. For better readability for the purposes of this 

document, the individual cell results have been omitted. 

#Initial settings creation 
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import pandas as pd 

import glob,os 

import re 

import seaborn 

#import workspace 

workspace = "/home/fagi/16SrRNA" 

#set workspace 

dir = os.chdir(workspace) 

pd.set_option('display.max_rows', 500) 

pd.set_option('display.max_columns', 500) 

pd.set_option('display.width', 1000 

!ls reportold/ 

listofviromesrna = [] 

for z in glob.glob("reportold/*"): 

    #print(z.split("_")[1]) 

    y = z.split("_")[1] 

    listofviromesrna.append(y) 

#Create merged table 

merged = pd.DataFrame(columns=['SAMPLE']) 

for z in glob.glob("reportold/*"): 

    name = z.split("_")[1] 

    df = pd.read_csv(z,sep = "\t", header = None) 

    idx = 0 

    df.insert(loc = idx, column = "SAMPLE", value = name) 

    merged = merged.append(df) 

    #print(name) 

merged.columns = ["SAMPLE","percentage","fragments", "directly", "tax","NCBI_number","name"] 

selected = merged[merged["tax"]=="G"] 

len(selected) 

# Function to read each csv transformed file 

def readreport(csv,taxname,threshold): 

    samplename = csv.split("_")[1] 

    dffile = pd.read_csv(csv, sep = "\t",header = None) 

    dffile["SAMPLE"] = samplename 

    #print("check") 

    dffile.columns = ["percentage","fragments", "directly", "tax","NCBI_number","name","SAMPLE"] 

    num = dffile[dffile["name"].str.contains("Viruses")].index 

    dffile = dffile.iloc[num[0]:] 

    dffile = dffile[dffile["fragments"]>= threshold] 

    #print("check") 

    selected = dffile[dffile["tax"] == taxname] 

    #print("check") 

    finalselected = pd.DataFrame() 

    finalselected[samplename] = selected["name"] 
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    return finalselected.reset_index(drop=True), selected 

#Checkpoint 

len(df["SAMPLE"].unique()) 

#Pivoting table  

z = pd.pivot_table(df, values= "fragments", index = "name", columns = "SAMPLE") 

 

AmpliSeq sequencing yielded with VCF files as a result. Data such as SNP’s reference, 

position, quality, gene were derived from this data and merged into one csv file to make it 

readable for python libraries used for statistical data analysis. Bash shell was used and an 

individual script was created, this script is presented in the Table 5. 

Table 5. Script used for merging VCF format files. Jupyter lab software was used to perform 

all actions in cited scripts. For better readability for the purposes of this document, the 

individual cell results have been omitted. 

#Import presets 

import pandas as pd 

import glob,os 

import io 

import os 

import pandas as pd 

import re 

workspace = "/home/fagi/SNP/" 

dir = os.chdir(workspace) 

pd.set_option('display.max_rows', 1500) 

pd.set_option('display.max_columns', 1500) 

pd.set_option('display.width', 1500) 

#Read VCF files based on github.com/dceoy/ repository 

#Create dataframe with sample columns 

merged = pd.DataFrame(columns=['SAMPLE']) 

#look for files in specific folder 

for z in glob.glob("R_2018_12_06_06_15_41_user_SN2-127-43-49_SNP_Ludzie/VCF_files/*vcf"): 

    #read datafile 

    df = read_vcf(z) 

    idx = 0 

    #insert columns with sample 

    df.insert(loc = idx, column = "SAMPLE", value = z) 

    #append next dataframe to it 

    merged = merged.append(df) 

    #read only specific columns 

    merged = merged[['SAMPLE', "CHROM", 'POS', "REF", "ALT", "INFO"]] 

    merged["SNP"] = merged["CHROM"].astype(str)+":"+merged["POS"].astype(str) 
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#Define annotated file 

def readannotated(datafile): 

    #Read file 

    df=read_vcf(datafile) 

    #Set index to 0 

    idx=0  

    #insert new column 

    df.insert(loc = idx, column = "SAMPLE", value = datafile) 

    #Pick only few columns from file 

    df = df[['SAMPLE', "CHROM", 'POS', "REF", "ALT", "INFO"]] 

    #Create columns SNP with merging Chrom and Pos 

    df["SNP"] = df["CHROM"].astype(str)+":"+df["POS"].astype(str) 

    #separate column Info 

    info = df["INFO"].str.split("ANN=", expand = True) 

    #separate info by |  

    gene = info[1].str.split("|", expand = True) 

    #create gene column 

    df["GENE"] = gene[3] 

    #create function column 

    df["FUNCTION"] = gene[7] 

    #create type column 

    df["TYPE"] = gene[1] 

    df["mutation"] = df["REF"]+df["ALT"] 

    df["SNPmutation"] = df["SNP"]+" | "+df["mutation"]+" | "+df["GENE"] + " | "+df["FUNCTION"] 

    return df  

#import and merge annotated files 

z = 0 

merged = pd.DataFrame() 

testing = pd.DataFrame() 

for file in glob.glob("*/VCF_files/Annotated*.vcf"): 

    #print(file) 

    try: 

        df = readannotated(file) 

    except KeyError: 

        print(file) 

        z = z+1 

        pass 

    merged = merged.append(df) 

print(z) 

 

Data exported from BaseSpace Illumina sequencing and analyze yielded with many output 

files from BLAST aligner. Those files were imported to Jupyter Lab environment using Pandas 

(Python Data Analysis Library). The files contained information about aligned sequences and 
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NCBI taxid numbers. To retrieve full taxonomy data, such as classification and nomenclature 

for all of the organisms annotated in public reference databases, taxonomizr (0.9.3) package 

was used in RStudio 4.1 environment. Its function is to allocate taxonomy to an NCBI 

accession number. This package allowed to download data dumps (last updated on 26.02.2022) 

and to create a local repository for custom taxonomic assignment. R 4.1 was used to create 

individual script. It is presented in the Table 6.  

Table 6. An individual script created for identification of organisms’ taxonomy based on 

taxomizr package. The script automates annotation based on taxids presented in output BLAST 

files. 

#read commands from bash input 

args <- commandArgs() 

#load needed libraries 

library("dplyr") 

library("taxonomizr") 

#read blastn result 

sampledf <- read.csv(args[1], sep="\t",header = FALSE) %>% select(V2,V10, V11) 

#transform to list unique accession numbers 

array <- as.character(unique(dplyr::pull(sampledf, V2))) 

#identify taxids based on accession numbers 

taxidarray <- accessionToTaxa(array, "accessionTaxa.sql", version = c("version","base")) 

#create table with accession numebers and taxids 

sampletaxdf <- data.frame(array, taxidarray) 

#Assign taxonomy to taxids 

taxonomylevels <- getTaxonomy(taxidarray, sqlFile = "nameNode.sqlite",desiredTaxa = c("family", 

"genus", 

                                                                                      "species")) 

# make final table and save file as csv 

finalidentification <- bind_cols(sampletaxdf,taxonomylevels) 

write.csv(finalidentification, args[1]) 

 

Finally, data derived from FASTQ files were saved as csv and proceeded for statistical data 

analysis. All data were normalized against total number of reads in each sample. 
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9.13. Statistical Data Analysis 

9.13.1 Comparison of detected SNP distribution to microbiome diversity (Shannon) 
 

Correlation between detected SNPs and the diversity index in 16S rRNA and bacteriophage 

elements of microbiome was estimated using Shannon-Wiener equation that is the most widely 

used indicator of biodiversity (Spellerberg & Fedor, 2003). Its value determines the probability 

that two random elements from a sample belong to different species. Taxonomy level of 

species was used to calculate the index value for bacteria. Function based on provided equation 

was used to calculate index values and showed in the Table 7 and Equation 1. respectively. 

H=−∑i=1s(pilnpi) 

Equation.1   Shannon Wiener Index equation.  s - the number of Operational Taxonomy Units 

(OTUs).  pi - the ratio of the number of individuals of a given OTUs by i.  

 

Table 7. Shannon Wiener Index equation transformed into Python function to calculate values 

for specified samples. 

def calculateshannon(row): 

    table["taxcol"] = row 

    table["log"] = np.log(table["taxcol"]) 

    table["log*pi"] = table["taxcol"]*table["log"] 

    shannon = -table["log*pi"].sum() 

    return(shannon) 

9.13.2 Principal Component Analysis (PCA) of microbiome diversity data 
 

PCA was performed using Rstudio environment in 3.1 version. Following libraries were 

imported and applied: “dplyr”, “tibble”, “ggplot2”, “ggfortify”,tibble”,”stringr”,”data.table”; 

function (code) created for this analysis is presented in the Table 8.. PCA is a method of 

dimension reduction in analysis of large datasets with a high number of dimensions (variables). 

In my data, each variable like bacterial genus or bacteriophage family can be presented as a 

different dimension. PCA is primarily used to reduce the variables describing a phenomenon 

and to discover possible regularities between features. It allows for identification of variables 

that have a strong effect on the appearance of individual principal components, that is, those 
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that form a homogeneous group. Finally, PCA plots are projections of multidimensional data 

on a 2-D plane. R 4.1 was used to create individual script. It is presented in the Table 8. Biplot 

Figures was created using “factoextra” library in R. Creating PCA plot is only possible if 

variance can be calculated, so AmpliSeq sequencing cannot be visualized that way. 

Dimensions used in these Figures were chosen based on their variance coverage from scree 

plots generated using the same library in R.  Scree plot data is presented in the Figure 3.  

Table 8. A script used to implement function for PCA analysis on csv generated from 16S 

rRNA, phageome, and SNPs identification. R in 3.1 version was used. 

createpca <- function(csv, patientfile, settitle, column) { 

  #import patient file 

  patientscsv <- read.csv(patientfile, sep =";") 

  #import data file 

  print(csv) 

  my_data <- read.csv(csv,sep = "\t")  %>%   

    select(-X) %>% select(patients) %>% column_to_rownames("tax") 

  my_data[is.na(my_data)] <- 0 

   

  #Count matrix 

  pca <- prcomp(my_data, scale = T) 

   

  #Manipulate tables 

  pca_df <- as.data.frame(pca$rotation) 

  #extract from index 

  pca_df <- tibble::rownames_to_column(pca_df, "patientnr") 

  #join the Table with patients 

  pca_df <- dplyr::left_join(pca_df,patientscsv, by = "patientnr") 

   

  #PCAloadings <- data.frame(Variables = rownames(pca$rotation), pca$rotation) 

  #Plot PCA 

  pcaplot0 <- ggplot(pca_df,aes(PC1,PC2)) + 

    geom_point(aes(color=get(column)),size = 10) + 

    geom_text(label = pca_df$patientnr, size = 1) + 

    labs(title=settitle, 

         x ="PC1", y = "PC2") 

  ggsave(paste0("PCAplots/",column,".jpg")) 

  return(pcaplot0) 

} 
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Figure 3. Scree plots presenting eigenvalues for each individual Dimension. Variances were 

calculated using get_eigenvalue() function in R’s factoextra library. Two dimensions that 

cover most of the percentage of explained variances were chosen for biplot creating. Panel (A) 

is related to bacterial microbiome composition data, while panel (B) to bacteriophage 

microbiome composition data. 

PCA plots in 3 dimensions were created using “pca3d” library in R. using a individual created 

function. Variables calculated previously were used in pca3d function to visualize 3 

dimensions at one time and to mark outliers. 
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9.13.3 Analysis of correlation between SNPs distribution and occurrence of bacteria presence 

using Cramer’s V test 
 

Cramer’s V test was used as a measure of association between two nominal variables, based 

on Pearson’s chi-squared statistic. This assumption is satisfied by the factors that we can 

specify in the binary system. Where their occurrence is the number 1, and their absence is the 

number 0. For this purpose, contingency tables were created using Pandas Dataframes. 

Cramer’s V equation was transformed into Python 3.6 function and presented in the Table 9.  

Table 9. Individual function to implement Cramer’s V test for nominal variable calculation in 

Python 3.6 

def cramers_corrected_stat(cramermatrix): 

    chi2 = scipy.chi2_contingency(cramermatrix)[0] 

    number1 = cramermatrix.sum() 

    phi2 = chi2/number1 

    z,v = cramermatrix.shape 

    phi2corr = max(0, phi2 - ((k-1)*(r-1))/(number1-1))     

    rcorr = z - ((z-1)**2)/(number1-1) 

    kcorr = v - ((v-1)**2)/(number1-1) 

    return np.sqrt(phi2corr / min( (kcorr-1), (rcorr-1))) 

9.14. Test of proportion 
 

Correlation between bacterial and bacteriophage presence was calculated using test for 

proportions based on normal z-test. Function from statsmodel library coded in Python 3.6 was 

used to compute results. Formula used for calculation is presented in Equation 2. Quantitative 

data from microbiome composition sequencing was transformed into categorical where 

variables were defined as “present” and “absent” in relation to bacteriophages or bacteria. 

𝑧 =  
�̂� − 𝑝

√𝑝(1 − 𝑝)
𝑛

 

Equation 2. Normal z-test equation used in statsmodel library in function 

statsmodels.stats.proportion.proportions_ztest¶ written in Python 3.6. �̂� – sample proportion, 

𝑝 – population proportion, 𝑛 – sample size.  
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10. Results 

10.1. Samples collected from patients 
 

148 gastric samples were collected from patients over 2 years of collection in the Endoscopy 

Department, Regional Specialist Hospital in Wroclaw. Among the patients included in the 

study, there were 91 women and 56 men. 141 Blood samples was collected from these patients. 

The average age of women was 54, and men was 59. During the assessment by the physicians, 

ICD (International Classification of Diseases) codes corresponding to the syndromes labeled 

were assigned to each patient (Drösler et al., 2021). All the patients’ ICDs are shown in the 

Table 10. 

Table 10. ICD-10 classified diseases diagnosed by physicians during endoscopy examination 

of patients enrolled to this study 

ICD 

Code 

ICD Meaning Number of 

diagnosed patients 

D37.1 Neoplasm of uncertain or unknown behavior: Stomach 1 

D48 Neoplasm of uncertain or unknown behavior of other and 

unspecified sites. 

1 

D50 Iron deficiency anemia 1 

D50.9 Iron deficiency anaemia, unspecified 1 

K21 Gastro-esophageal reflux disease 17 

K25 Gastric ulcer 1 

K26 Duodenal ulcer 1 

K26.7 Duodenal ulcer Chronic without haemorrhage or 

perforation 

2 

K29 Gastritis and duodenitis 64 

K29.5 Unspecified chronic gastritis 5 

K29.6 Other gastritis 2 

K29.9 Gastroduodenitis, unspecified 1 

K30 Functional dyspepsia 2 

K31 Other diseases of stomach and duodenum 1 
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Neurotic 

K31.8 Other specified diseases of stomach and duodenum 3 

K44 Diaphragmatic hernia without obstruction or gangrenę 1 

K52.9 Noninfective gastroenteritis and colitis, unspecified. 1 

K59 Other functional intestinal disorders 1 

K63 Other diseases of intestine 2 

K86 Other diseases of pancreas 1 

K92 Other diseases of digestive system 1 

Q40.1 Congenital hiatus hernia. 1 

R05 Cough 1 

R10 Abdominal and pelvic pain 5 

R10.1 Pain localized to upper abdomen 3 

R10.4 Other and unspecified abdominal pain. 9 

R11 Nausea and vomiting 1 

R29.8 Other and unspecified symptoms and signs involving the 

nervous and musculoskeletal systems 

1 

R53 Malaise and fatigue 1 

Z03.8 Encounter for observation for other suspected diseases 

and conditions ruled ou 

1 

Z03.9 Observation for suspected disease or condition, 

unspecified 

1 

 

10.2. Bacterial DNA sequencing 
 

In total, 145 tissue bioptates were proceeded for bacterial DNA isolation using Micro Beat 

Bead Gravity AX kit (A&A Biotechnology). Process was successful in 144 cases which were 

forwarded for 16S rRNA library preparation. Final quantification of library using Ion Universal 

Library Quantification Kit (Thermofisher) showed that in 128 samples the library was correctly 

prepared and barcoded. Seven sequencing sessions were performed for bacterial microbiome 

composition investigation. Reports from Ion Torren PGM system are presented in the Figure 4. 
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Figure 4. Reports for 16S rRNA amplicon sequencing generated with Ion Torrent PGM on 

IonTorrent Server. The panels for each sample present Quality control data regarding 16S 

rRNA amplicons.  Panel (A) - Distribution of ISPs on the chip; redness increases with the 

density of beads at a given location on the chip. Panel (B) - Statistics on sequenced ISPs. The 

individual percentages show whether the process of preparing the library was carried out 

correctly. Panel (C) - Statistics on the single reads that were successfully generated during 

sequencing. 

10.3. Ampliseq human genome sequencing  
 

Blood samples (141) were collected from patients of Endoscopy Department, Regional 

Specialist Hospital in Wroclaw. DNA was isolated using Sherlock AX (A&A Biotechnology). 

Process was successful in 111 samples, and these were forwarded to library preparation using 
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Ion Ampliseq Library Kit Plus (Thermofisher Scientific). Final quantification of library using 

Ion Universal Library Quantification Kit (Thermofisher Scientific) showed that in 72 samples 

the library was correctly prepared and barcoded. Twelve sequencing sessions were performed 

for Ampliseq SNPs investigation. Ten example reports from Ion Torren PGM system are 

presented in the Figure 5. 

 

Figure 5. Selected reports for Ampliseq amplicon sequencing generated with Ion Torrent PGM 

on IonTorrent Server. 3 Panels to each sample present Quality control data regarding Ampliseq 
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amplicons.  Panel (A) - Distribution of ISPs on the chip. The redder the color, the higher the 

density of beads at a given location on the chip. Panel (B) - Statistics on sequenced ISPs. The 

individual percentages show whether the process of preparing the library was carried out 

correctly. Panel (C) - Statistics on the single reads that were successfully generated during 

sequencing. 

10.4. Phageome Sequencing  
 

In total, 145 solutions with viral part of stomach microbiome were proceeded for 

ultracentrifugation and further DNA isolation using Sherlock AX (A&A Biotechnology). Final 

DNA quantification was performed using QuantiFluor ds DNA system 1 ml (Promega) and 

Quantus Fluorometer (Promega). 101 samples were forwarded for sequencing library 

preparation using Illumina DNA prep kit (Illumina). In two cases process of creating the library 

was failed. Finally, 99 samples were sequenced during 4 sequencing sessions using NextSeq 

550 device and NextSeq 500/550 Mid Output kit (Illumina). Viral part of the microbiome 

sequencing was performed offline because of the local software incompatibility with online 

Illumina software, therefore automatic reports were not generated as IonTorrent Server did in 

previous sequencing sessions. Nevertheless, each file generated by the sequencer was manually 

checked with FASTQC software. An example sequencing report is shown in the Figure 6.  

Figure 6. An example reports for Illumina sequencing generated using FASTQC software. 

Panel (A) – distribution of quality scores among generated reads. Panel (B) – distribution of 

Phred quality scores among single base pairs in generated reads. 
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10.5. Microbiome components correlate with disease states 
 

To evaluate possible correlation between observed diseases (comorbidities) and microbiome 

composition 143 samples were sequenced to identify bacterial 16S rRNA coding regions. 

Using z-test function implemented in Python library, p values were calculated. Ninety-nine 

phageome samples were analyzed using the same test to evaluate specific elements of 

phageome presence in samples from patients with diagnosed diseases in accordance with the 

International Classification of Diseases. 

10.5.1. Bacterial components in specific disease states 

 

Fourteen correlations were found by statistical analysis of bacterial components and ICD-

classified diseases. It turned out, that associations were related to diseases classified as: K29 – 

“Gastritis and duodenitis”, R.10.4 – “Other and unspecified abdominal pain”, K21 – “Gastro-

oesophageal reflux disease”.  One proportion z-test was used to compare proportion in patients 

where ICD-classified disease was diagnosed (observed group) and patients without any disease 

diagnosed or claimed in the interview (control group). All correlations were defined in CI at 

level of 0.95 and with p-value lower than 0.05.  Bacterial species listed in the Table 11. were 

enriched in patients with specific disease states.  

Table 11. Correlations between bacterial species found in the microbiome composition and 

ICD classified illnesses diagnosed in patients. P-value was calculated using z-test function 

from statsmodels Python 3.6 library. 

Bacterial species ICD classification p-value 

Escherichia albertii K29 0.02 

Variovorax sp. PAMC 28711 K29 0.01 

Fusobacterium nucleatum K29 0.02 

Escherichia albertii R10.4 0.01 

Klebsiella pneumoniae R10.4 0.02 

Klebsiella variicola R10.4 0.03 

Raoultella ornithinolytica R10.4 0.03 

Serratia marcescens R10.4 0.01 

Variovorax sp. PAMC 28711 R10.4 0.03 

Phreatobacter cathodiphilus R10.4 0.03 
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Escherichia albertii K21 0.03 

Hydrogenophaga sp. PBC K21 0.03 

Variovorax sp. PAMC 28711 K21 0.03 

Haemophilus sp. oral taxon 

036 

K21 0.02 

10.5.2. Phageome components in specific disease states 

 

Three correlations were found by statistical analysis of bacteriophage components with ICD-

classified diseases. Associations are present among diseases classified as: K29 – “Gastritis and 

duodenitis”, K63 – “Other diseases of intestine”, K29.6 – “Other gastritis”. Those correlations 

were defined in CI at level of 0.95 and with p-value lower than minimum 0.05. One proportion 

z-test was used to compare proportion in patients where ICD-classified disease was diagnosed 

(observed group) and patients without any disease diagnosed or claimed in the interview 

(control group). Bacteriophage family listed in the Table 12. were enriched in specific disease 

states. 

Table 12. Correlations between bacteriophage genera found in the microbiome composition 

in patients and ICD classified illnesses diagnosed in these patients. P-value was calculated 

using z-test function from statsmodels Python 3.6 library. 

Bacteriophage family ICD classification p-value 

Clostridioides prophages K29 0.005 

Tequatrovirus K63 0.02 

Inovirus K29.6 0.02 

 

10.6. SNPs correlated to microbiome diversity inex 
 

Among the sequenced samples, 44 samples were applicable for analysis of possible 

correlations between SNPs and bacterial microbiome diversity. Analysis revealed 13 SNPs 

which correlated to significant microbiome diversity change, as demonstrated by changes in 

the value of the Shannon index (t-test was performed using CI = 95% with p <0.05). 

Alignments at the level of bacterial species were analyzed, that is at the lowest taxonomy level 

that was annotated in FASTQ analysis. Changes in Shannon index values correlated to the 

identified SNPs and the reference allele is shown in the Table 13. and in the Figure 7. 
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Table 13. SNPs that correlate with significant change in bacterial microbiome composition 

measured by Shannon-Wiener Index. T-test was performed using CI = 9% and p<0.05 

Variant Gene Variant type Change in 

Shannon index 

value 

G>A TLR5 Stop gained Increase 

C>T IL-1Β Upstream gene  Decrease 

T>C TLR2 Synonymus Increase 

G>A TLR10 Upstream gene Decrease 

T>A TLR1 Missense Decrease 

dupCT IL6 Upstream gene Increase 

TCT>CCC IL6 Upstream gene Increase 

A>G IL6 Upstream gene  Increase 

C>T IL6 Upstream gene Increase 

C>A IL6 Upstream gene Increase 

C>G IL6 Upstream gene Increase 

T>G IL6 Upstream gene Increase 

 



73 
 

 

Figure 7. SNPs which correlate with significant change in Shannon-Wiener diversity index. 

Significance was calculated with Confidence Interval = 95% for p<0.05 using t-test. Results 

for samples with an identified single nucleotide allele are marked as "variant". Results for 

samples without an identified single nucleotide allele are marked as "Reference". 
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10.7. Characteristic microbiome elements that correlate to decreased diversity 

in bacterial microbiome  
 

10.7.1 Bacteriophage groups correlated to lower diversity among bacterial population 

 

Similar to analysis of SNPs, correlation between bacteriophage occurrence and Shannon 

diversity of bacterial microbiome composition based on 16S rRNA genes sequencing is 

presented in the Figure 8. Two genera of bacteriophages turned out to be significantly 

associated to bacterial composition of patients’ microbiome. Presence of Brussowvirus and 

Triavirus genus in the human microbiome correlated to significantly decreased bacterial 

diversity measured by Shannon index with p<0.05 (estimated using t-test). Brussowvirus are 

viruses that infect bacteria from Streptococcus sp. while Triavirus is specific to Staphylococcus 

sp. Both groups represent long non-contractile tails morphology belonging to Siphoviridae. 

Figure 8. Bacteriophages presence which correlates with significant change in Shannon-

Wiener diversity index. Significance was calculated with Confidence Interval = 95% for 

p<0.05 using t-test. Results for samples with specified bacteriophage are marked as "present". 

Results for samples without specified bacteriophage are marked as "absent". 

10.7.2 Bacterial composition may correlate to bacterial population diversity in microbiomes 

 

Shannon diversity was related to the occurrence of specific bacterial pathogens. They were 

selected on the basis of the literature analysis as related to gastritis. The analyzed species 

were: Helicobacter Pylori (Watari et al., 2014), Rothia mucilanigosa (J. Liu et al., 2018) 

Prevotella melaninogenica (T. Dong et al., 2017) Neisseria subflava (Nakamura et al., 2006) 
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Prevotella jejuni (Könönen & Gursoy, 2021a), Salmonella enterica (Zha et al., 2019).  The 

analysis showed that microbiomes containing S. enterica and P. melaninogenica had 

significantly lower diversity than others. Presence of R. mucilaginosa correlated to 

significantly increased diversity expressed by Shannon index. Interestingly, no significant 

differences for H. pylori were observed. These results are presented in the Table 14. 

Pathogen Positives Alfa-

Diversity 

Negatives 

Alfa – 

Diversity 

Significance 

Helicobacter pylori 2.12 2.09 The t-value is -1.38324. 

The p-value is 0.08451. 

The result is not 

significant at p < .05. 

Rothia mucilanigosa 1.78 2.09 The t-value is -2.46475. 

The p-value is 0.007524. 

The result is significant at 

p < .05 

Prevotella 

melaninogenica 

2.08 1.82 The t-value is 1.78231. 

The p-value is 0.038544. 

The result is significant at 

p < .05. 

Neisseria subflava 2.06 2.11 Not enough data 

Prevotella jejuni 2.07 1.72 The t-value is 1.33291. 

The p-value is 0.092474. 

The result is not 

significant at p < .05. 

Salmonella enterica 2.08 1.63 The t-value is -2.65711. 

The p-value is 0.004447. 

The result is significant at 

p < .05. 

Table 14. Correlations between presence of selected bacterial species associated with gastritis 

and diversity in patients’ microbiomes. P-value calculated using t-test.  
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10.8. Principal Component Analysis (PCA) 
 

To perform PCA analysis data table created with pandas Python 3.6 library was used. Reads 

annotated to specific Operational Taxonomy Units belonging bacteria and bacteriophages were 

normalized to number of total paired-end reads in each sample.  

 

10.8.1 Biplots 

 

Based on variance, a biplot was created to visualize which elements of the investigated 

microbiome components in represented dimensions. Figures were created using “factoextra” 

library in R. Creating PCA plot is only possible if variance can be calculated, so SNPs presence 

data cannot be visualized that way. A clustering with variance in individual components of the 

bacterial and viral microbiome was performed. The samples were also colored according to 

the single nucleotide variant they carried. Acute angle between two arrows in biplots means 

strong association between a corresponding row and column in the calculation. The direction 

and lengths of the vectors in relation to each other, expressed on the axes of the graph, indicate 

the influence in each dimension. In the Figure 9. it can be noticed that for instance 

Synechococcus sp and Kocuria sp. have a strong effect on sample clustering in a two-

dimensional graph. Presence of Corynebacterium sp. is negatively associated with 

Lactobacillus.  
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Figure 9. Two-dimensional biplot showing the relationship between the different genera of 

bacteria, which affects their clustering in PCA analysis. Patients with complete phage and 

bacterial microbiome composition data as well as sequencing SNPs were used for analysis. 

Analysis was done using bacterial microbiome composition data. 

Phageome composition sequencing data was used to create biplot that show associations 

between different genus of bacteriophages. It can be observed that Tequatrovirus and 

Lambdavirus are negatively associated to Triavirus. Traversvirus, Triavirus, Bcepfunavirus, 

Lambdavirus and Tequatrovirus have the strongest impact on sample clustering. Results are 

present in the Figure 10.  
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Figure 10. Biplot visualizing dimensions that represent bacteriophage genera derived from 

metagenomics sequencing and that have the highest influence on PCA plots. Patients with 

complete phage and bacterial microbiome composition data as well as sequencing SNPs were 

used for analysis. The presence of some bacterial groups in this Figure is due to their annotation 

in the NCBI database: some of the bacteriophages are prophages for instance: Haemophilus, 

Streptomyces, thus annotated as a part of bacterial genomes. 
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10.8.2 Clustering by disease state using Principal Component Analysis 
PCA analysis did not reveal any clustering among data sorted by ICD diagnosed state – Figure 

11. Panels were generated using ggplot2 R package and prcomp() function. Samples were 

clustered according to variance calculated from bacterial microbiome quantitation data. 

Figure 11. Principal Component 

Analysis applied to different 

Operational Taxonomy Levels in 

bacterial microbiome. Plot 

created using ggplot2 library in R. 

Panel (A) shows samples 

clustered by bacterial families 

microbiome composition, panel 

(B) shows samples clustered by 

bacterial genus microbiome 

composition, panel (C) shows 

samples clustered by bacterial 

species. 
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Differences between samples are insignificant to distinguish clusters among 21 different 

disease states according to ICD.  

Figure 12. Principal Component Analysis applied to different Operational Taxonomy Units in 

phageome. Plot created using ggplot2 library in R. Panel (A) shows samples clustered by 

bacteriophages’ species microbiome composition, panel (B) shows samples clustered by 

phages’ genus microbiome composition. 
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Clustering by ICD diagnosed illness was done to phageome composition data. Differences 

between clustered samples were small and insignificant. Twenty-two diseases according to 

ICD were diagnosed in group of the study. Data is presented in the Figure 12. PC1 and PC2 

components were chosen because they covered over 75% of Variance Explained on Scree plots 

presented in the Figure 13. 

Figure 13. Scree plots generated to evaluate explained Variance among calculated Principal 

Components. Data generated using ggplot2 R’ package. Panel (A) present scree plot for 

bacteriophages’ microbiome composition while Panel (B) presents scree plot for bacterial 

microbiome composition. 
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10.9. Microbiome composition in relation to Single Nucleotide 

Polymorphisms 
 

The clustering of samples based on the composition of the microbiome developed from 16S 

rRNA genes sequencing was evaluated. The samples were colored according to specific 

bacterial species that were identified. No significant correlations were found. Results are 

present in the Figure 14. 

16S rRNA gene sequencing data was tested for 1190 possible variants clustering. It was done 

by PCA plotting visual rating. The number of variants in the analysis is equal to OTUs number 

annotated in all samples. SNPs couldn’t be visualized with PCA, due to their binary character. 

Nevertheless, cross analysis including polymorphism occurrence was applied. SNPs were 

tested in 940 different configurations in relation to phageome and bacterial microbiome 

composition. No significant clustering was confirmed by visual observation of generated plots. 

Exemplary plots are presented in the Figure 15. where samples with complete 16S rRNA and 

SNPs sequencing data were grouped by the variance generated basing on the bacterial or 

bacteriophage microbiome composition.  

Figure 14. Principal Component Analysis applied to bacterial microbiome composition data. 

Plot created using ggplot2 library in R. Panel (A) presents data generated basing on bacterial 

composition of microbiome while panel (B) shows data for the bacteriophages’ part of 

microbiome. 
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Figure 15. Principal Component Analysis applied to bacterial microbiome composition data 

and grouped by presence of pathogens related to gastritis. Figure created using ggplot2 library 

in R. Panel (A) present visualization of presence of H. pylori, Panel (B) is dedicated to N. 

subflava presence, Panel (C) is for P. melaninogica, Panel (D) shows data related to R. 

mucialignosa. 

10.10. 3D Principal Component Analysis of microbiomes in the context of 

comorbidities 
 

3D PCA analysis was performed using normalized results derived from 16S rRNA genes 

sequencing, phageome sequencing, and medical data from patients. Patients were sorted 

according to their health disorders. 
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Figure 16. 3D Principal Component Analysis plotted based on phageome components of 

human microbiome; individual objects have been labeled according to whether specific chronic 

illness was diagnosed. Figure was created using pca3d package in R. Panel (A) shows 

bacteriophage composition data with labeled patients with claimed hypertension. Panel (B) 

shows bacteriophage composition data with labeled patients with claimed diabetes. 

Analysis presented in the Figure 16 shows that phageomes of patients with chronic diseases 

tend to have significantly different composition to those in healthy ones. Similar analysis 

(Figure 16) that involved bacterial microbiome composition showed that these differences 

ware related only to bacteriophage composition while there were no significant differences 

among bacterial composition. 
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Figure 17. 3D Principal Component Analysis plotted based on bacterial components of human 

microbiome; individual objects have been labeled according to whether specific chronic illness 

was diagnosed. Figure was created using pca3d package in R. Panel (A) shows bacterial 

composition data with labeled patients with claimed hypertension. Panel (B) shows bacterial 

composition data with labeled patients with claimed diabetes. 

 

10.11. Concomitance of SNPs and specific groups of bacteriophages 
 

Cramer’s V test was used to asses correlation between occurrence of particular SNPs in a 

patient genome and particular bacteriophages (or their groups) in phageomes, since these 

represent nominal variables. Quantitative data was transformed into binary format by the use 

of threshold = 10, that is presence of an OTU was considered positive in a sample when more 

than 10 reads were annotated to this taxonomy id. This type of calculation is based on Pearson’s 

chi-squared statistic. The analysis revealed concomitance of some investigated allels and the 

presence of bacteriophage genera, listed in the Table 15.  
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Table 15. Concomitance of SNPs variants and composition of bacteriophages’ part of 

microbiome. Estimation was obtained using collections library in Python 3.6. 

Chromosome 

coordinates (rsID) 

Type of Variant Gene  Description - The samples in which 

the listed variant was detected were 

associated with the identification of 

specific groups of bacteriophages. 

Regulation of immune response genes 

chr2:112837577-

112837585 

(rs3917345) 

delCCAA 

(Insertion and 

Deletion)- 

Il-1 beta  In 37 cases the Salmonella 

prophages were detected while in 5 

they were absent. A similar 

association occurred with other 

groups where the Staphylococcus 

prophages were identified in 36 

samples and absent in 6, 

Lambdavirus present in 30 and 

absent in 12, Kayvirus present in 28 

and absent in 14, Punavirus present 

in 28 cases and absent in 14, 

Teseptimavirus present in 25 and 

absent in 17. 

chr2:112830955 

(rs2464906) 

A>G Il-1 beta Kayvirus was identified in 27 

samples while not identified in 12 

with this variant.   

Lambdavirus was identified in 28 

samples while not identified in 11 

with this variant.  Teseptimavirus 

was identified in 23 samples while 

not identified in 16 with this variant.  

Chr2:112834078 

(rs1143630) 

T>G Il-1 beta Lambdavirus was identified in 27 

samples while not identified in 11 

with this variant.  Teseptimavirus 
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was identified in 26 samples while 

not identified in 12 with this variant. 

chr2:112830976 

(rs1143642) 

A>G Il-1 beta Lambdavirus was identified in 27 

samples while not identified in 11 

with this variant. Kayvirus was 

identified in 26 samples while not 

identified in 12 with specified 

variant. Punavirus was found in 26 

and not identified in 12 samples with 

this variant 

chr2:112835941 

(rs1143629) 

G>A Il-1 beta Lambdavirus was identified in 25 

samples while not identified in 9 

with this variant. Punavirus was 

identified in 25 samples while not 

identified in 9 with this variant. 

Kayvirus was identified in 23 

samples while not identified in 11 

with this variant.    

chr2:112829544 

(rs2853550) 

A>G Il-1 beta Staphylococcus prophages were 

identified in 35 samples and absent 

in 5, Staphylococcus prophages 

present in 34 and absent in 6, 

Lambdavirus present in 28 and 

absent in 12, Punavirus present in 27 

cases and not identified in 13, 

Kayvirus present in 27 and not 

identified in 17. 

chr1:67189524 (no 

rsID) 

A>C IL23R Lambdavirus was identified in 26 

samples while not identified in 11 

with this variant.  Punavirus was 
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identified in 25 samples while not 

identified in 12 with this variant. 

Kayvirus was identified in 24 

samples while not identified in 13 

with this variant. 

chr12:68249814  

(rs976748) 

G>A IL22 Kayvirus was identified in 24 

samples while not identified in 9 

with this variant.  Lambdavirus was 

identified in 25 samples while not 

identified in 10 with this variant. 

Punavirus was identified in 24 

samples while not identified in 11 

with this variant. 

rchr7:22728045 

(rs2069833) 

C>T IL- 6 Kayvirus was identified in 24 

samples while not identified in 9 

with this variant.  Lambdavirus was 

identified in 24 samples while not 

identified in 9 with this variant. 

Punavirus was identified in 22 

samples while not identified in 11 

with this variant. 

chr4:25229876  (no 

rsID) 

T>C PI4K2B Lambdavirus was identified in 28 

samples while not identified in 11 

with this variant.  Kayvirus was 

identified in 27 samples while not 

identified in 12 with this variant. 

Punavirus was identified in 27 

samples while not identified in 10 

with this variant. Teseptimavirus was 

identified in 23 samples while not 

identified in 16 with this variant. 
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chr1:11794400 

(rs4846051) 

G>A MTHFR Lambdavirus was identified in 26 

samples while not identified in 9 

with this variant.  Punavirus was 

identified in 25 samples while not 

identified in 10 with this variant. 

Kayvirus was found in 24 and not 

identified in 11 samples with this 

variant. Teseptimavirus was found in 

21 and not identified in 14 samples 

with this variant 

chr1:153341436 

(rs3014859) 

A>G PGLYRP

4 

Lambdavirus was identified in 24 

samples while not identified in 11 

with this variant.  Kayvirus was 

identified in 23 samples while not 

identified in 12 with this variant. 

Punavirus was identified in 23 

samples while not identified in 12 

with this variant. Teseptimavirus was 

identified in 14 samples while not 

identified in 21 with this variant.   

chr1:153341677(no 

rsID) 

C>A PGLYRP

4 

Lambdavirus was identified in 25 

samples while not identified in 11 

with this variant.  Kayvirus was 

identified in 24 samples while not 

identified in 12 with this variant. 

Punavirus was identified in 24 

samples while not identified in 12 

with this variant. 

chr19:41355432 - 

rs11466313 

dupCTC / 

insCTCATGTC

TGFB1 Lambdavirus was identified in 24 

samples while not identified in 11 

with this variant.  Punavirus was 
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CCTG 

(CCCT)2CCTC 

identified in 24 samples while not 

identified in 11 with this variant. 

Kayvirus was identified in 23 

samples while not identified in 12 

with this variant.  

Cell metabolism 

chr20:56386407 

(rs1047972) 

T>C AURKA Lambdavirus was identified in 24 

samples while not identified in 11 

with this variant.  Kayvirus was 

identified in 23 samples while not 

identified in 12 with this variant. 

Punavirus was identified in 23 

samples while not identified in 12 

with this variant. Teseptimavirus was 

identified in 14 samples while not 

identified in 21 with this variant.   

chr2:160357664 

(rs6718526) 

T>C RBMS1 Lambdavirus was identified in 26 

samples while not identified in 10 

with this variant. Kayvirus was 

identified in 25 samples while not 

identified in 11 with this variant. 

Punavirus was identified in 25 

samples while not identified in 11 

with this variant 

 

Most common association was related to IL1 -beta gene. Six different SNPs in this gene could 

be identified as associated to presence of bacteriophages that belong to Kayvirus, Punavirus, 

Lambdavirus, Teseptimavirus. Two SNPs in the range of the gene PGLYRP4 were identified 

as associated to presence of bacteriophage families like Lambdavirus, Kayvirus and Punavirus. 

Single variants were identified regarding other genes: Ili 22, Il-6, MTHFR, Pl42KB, AURKA 
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and RBMS1 and their coexistence with Kayvirus, Punavirus, Lambdavirus, and 

Teseptimavirus bacteriophages. 

 

10.12. Gastritis – related bacteria association to Single Nucleotide 

Polymorphisms 
 

Correlation between identified SNPs and pathogens related to stomach diseases was checked. 

According to literature, following pathogens were chosen for the analysis: Helicobacter pylori 

(Watari et al., 2014) Prevotella jejuni (Könönen & Gursoy, 2021a) and Salmonella enterica 

(Zha et al., 2019). Cramer’s V test was used to compare categorical datasets for their potential 

correlation. This analysis revealed that specific alleles in 11 genes were related to H. pylori 

identification in bioptates from the stomach. Variants in IL22, TSPAN8, CCDC33, 

CACNA1A, IL23R, IL-1Β, CDKAL1, LTA, IL6, NOD1, TLR4 genes were identified as those 

with increased prevalence in individuals with H. pylori detected in stomach bioptates (p<0.01). 

Investigated correlations are presented in the Table 16. 

 

Table 16. Specific alleles related to increased frequency of Helicobacter pylori presence in 

stomach. Table created using counter Python 3.6 library on Ampliseq sequencing data and 

bacterial microbiome composition features. Cramer’s V test was used to confirm that presence 

of H. pylori is correlated with above variants with p<0.01. 

Position Allele Gene 

chr12:68251064 A>G IL22 

chr12:68255353 T>C IL22 

chr12:71183321 G>C TSPAN8 

chr15:74312311 C>A CCDC33 

chr19:13529284 TAATACTAATACAATAC CACNA1A 

chr19:13529487 T>C CACNA1A 

chr1:67165579 C>T IL23R 

chr1:67222666 T>C IL23R 

chr1:67238627 A>T IL23R 

chr1:67240275 G>A IL23R 
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Table 17. Alleles related to increased frequency of Rothia mucilaginosa. Table created using 

counter Python 3.6 library on Ampliseq sequencing data and bacterial microbiome 

composition features. Cramer’s V test was used to confirm that presence of R. mucilaginosa is 

correlated with above variants with p<0.005. 

position Variant Gene 

 chr12:68249918   T>C   IL22  

 chr12:68255258   C>T   IL22  

 chr19:41363851   C>T   TMEM91  

 chr19:498524   A>G   

MADCAM1  

 chr19:855574   

CGGCG  

 ELANE  

 chr1:67209833   C>T   IL23R  

 chr3:10290784   C>T   GHRL  

 chr3:159991864   T>C   IL12A  

 chr4:38783012   G>T   TLR10  

 chr6:20716864   A>G   CDKAL1  

 chr7:30454406   T>A   NOD1  

 chr8:117172544   C>T   SLC30A8  

 

chr2:112832890 C>T IL-1Β 

chr2:112837574 AATACCAAA IL-1Β 

chr2:112837576 TACCAACCAATACCAA IL-1Β 

chr6:20657114 T>C CDKAL1 

chr6:31575981 G>A LTA 

chr6:31579012 T>C LTA 

chr7:22726866 A>C IL6 

chr7:30446094 A>C NOD1 

chr9:117702840 T>C TLR4 
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The analysis revealed that specific alleles in 11 genes were related to increased Rothia 

mucilaginosa detection in bioptates from human stomach. Alleles in IL22, TMEM91, 

MADCAM1, ELANE, IL23R, GHRL, IL12A, TLR10, CDKAL1, NOD1, SLC30A8 genes 

were identified as those with increased prevalence in individuals with Rothia mucilaginosa 

detected in stomach bioptates (p<0.005).  Data is presented in the Table 17. 

 

Table 18. Alleles related to increased frequency of Prevotella melanonigica. Table created 

using counter Python 3.6 library on Ampliseq sequencing data and bacterial microbiome 

composition features. Cramer’s V test was used to confirm that presence of P. melanogenica 

is correlated with above variants with p<0.01. 

position Variant Gene 

 chr19:41332301   G>A   TGFB1  

 chr19:41337556   T>C   TGFB1  

 chr1:186681619   T>C   PTGS2  

 chr1:67204530   G>A   IL23R  

 chr1:67215986   T>G   IL23R  

 chr3:159992214   A>T   IL12A  

 chr5:148826812   C>T   ADRB2  

 chr5:148826910   G>C   ADRB2  

 chr6:20660912   T>A   CDKAL1  

 chr7:128723233   G>A   

FAM71F1  

 chr7:30446125   A>G   NOD1  

 chr7:30454406   T>A   NOD1  

 

Cramer’s V analysis revealed that specific alleles in 8 genes were related to increased Rothia 

mucilaginosa detection in biopsies from human stomach. Alleles in TGFB1, PTGS2, IL23R, 

IL12A, ADRB2, CDKAL1, FAM71F1, NOD1 genes were identified as those with increased 

prevalence in individuals with Prevotella melaninogenica detected in stomach’s bacterial 

microbiome (p<0.01).  Data is presented in the Table 18. 
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Table 19. Alleles related to increased frequency of Neisseria subflava. Table created using 

counter Python 3.6 library on Ampliseq sequencing data and bacterial microbiome 

composition features. Cramer’s V test was used to confirm that presence of N. subflava, is 

correlated with above variants with p<0.01. 

position Variant Gene 

 chr10:112996282   A>T   TCF7L2  

 chr10:112998590   C>T   TCF7L2  

 chr16:10948382   G>A   

CLEC16A  

 chr19:41354391   A>G   TGFB1  

 chr1:11794400   G>A   MTHFR  

 chr1:155192276   C>T   MUC1  

 chr1:67189464   G>A   IL23R  

 chr1:67204530   G>A   IL23R  

 chr1:67222666   T>C   IL23R  

 chr1:67240272   TCCTC   IL23R  

 chr3:10290784   C>T   GHRL  

 chr4:102267552   C>T   SLC39A8  

 chr4:99583507   T>C   MTTP  

 chr6:20660790   G>A   CDKAL1  

 

Cramer’s V analysis revealed that specific alleles in 10 genes were related to increased 

Neisseria subflava detection in bioptates from human stomach. Alleles in TCF7L2, CLEC16A, 

TGFB1, MTHFR, MUC1, IL23R, GHRL, SCL39A8, MTTP, CDKAL genes were identified as 

those with increased prevalence in individuals with Neisseria subflava. detected in stomach 

bioptates (p<0.01). As many as 4 variants were related only to IL23R gene.  Data is presented 

in the Table 19. 

 

 



95 
 

 

Table 20. Alleles related to increased frequency of Prevotella jejuni. Table created using 

counter Python 3.6 library on Ampliseq sequencing data and bacterial microbiome 

composition features. Cramer’s V test was used to confirm that presence of P. jejuni correlated 

with above variants with p<0.01. 

position Variant Gene 

 chr10:43573110   A>C   ZNF239  

 chr12:68252741   T>C   IL22  

 chr12:68253933   G>A   IL22  

 chr16:53767042   T>C   FTO  

 chr16:53776774   T>C   FTO  

 chr16:53786591   G>A   FTO  

 chr16:53786615   T>A   FTO  

 chr1:67219760   G>A   IL23R  

 chr1:67222666   T>C   IL23R  

 chr6:20657114   T>C   

CDKAL1  

 

The analysis revealed specific alleles in 5 genes as related to increased Prevotella jejuni 

detection in bioptates from human stomach. Variants in ZNF239, IL22, FTO, IL23R, CDKAL1 

genes were identified as those with increased prevalence in individuals with P. jejuni detected 

in stomach bioptates (p<0.01). Four among these variants are located within FTO gene. Data 

is presented in the Table 20. No significant variants were identified as related to Salmonella 

enterica presence among patients’ bacterial microbiome. 

 

10.13. Single Nucleotide Polymorphisms, bacteriophages, and their hosts 

tripartite association 
 

Correlation has been tested between bacteriophage presence and host’s variants detected in the 

genome. Cramer’s V test was used and bacteriophage’ families taxonomic level was 

investigated. Increased presence of two phage families were associated with variants in the 
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confidence interval of 0.95 and p<0.05: Kayvirus and Punavirus. Genes in which variants have 

been detected are involved in cytokine release (Il-1 beta, IL-22, Il-6, cell signaling (TGFP1, 

PI4K2B) and amino acids processing (AURKA). Results of the analysis of associations 

between bacteriophages and host’s genome variants are presented in the Table 21.  

 

Table 21. Variants related to increased presence of bacteriophages in patients’ phageomes; 

significantly more frequently represented phage families and their hosts are listed. Correlations 

were derived using Cramer’s V test and ViralHost Database. 

Position Gene rsID Allele Phage and its hosts 

chr1:11794400  MTHFR rs4846051 G>A 

Kayvirus; Staphylococcus 

simulans, cohti, codimenti, 

lugdunensis 

Punavirus; Salmonella 

enterica, Aeromonas veronii 

chr12:68249814  IL22 rs976748 G>A  

Kayvirus; Staphylococcus 

simulans, cohti, codimenti, 

nepalensis 

chr19:41355432  TGFB1 rs11466313 

dupCTC / 

insCTCATGTCCCTG  

Kayvirus; Staphylococcus 

simulans, cohti, codimenti, 

lugdunensis 

Punavirus; Salmonella 

enterica, Aeromonas 

salmonicida 

chr2:112835941  

Il-1 

beta rs1143629 G>A  

Kayvirus, Staphylococcus 

aureus, epidermidis, 

pasteuri, pettenkoferi 

chr2:112837577-

112837585  

Il-1 

beta rs3917345 delCCAA 

Kayvirus, Staphylococcus 

haemolyticus 

chr20:56386407  AURKA rs1047972 T>C 

Kayvirus, Staphylococcus 

haemolyticus 
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chr4:25229876  PI4K2B No rsID T>C 

Kayvirus, Staphylococcus 

captis 

chr7:22725717  IL6-AS1 rs35081782 dupCT  

Kayvirus, Staphylococcus 

captis 

 

11. Discussion 
 

In this study correlation between bacterial species and bacteriophages with ICD classification 

diseases was observed. SNPs present in genes involved in innate immune response are 

associated with changes in the microbiome diversity. Presence of specific bacteriophage or 

bacterial taxons associates to bacterial diversity in microbiomes. Also, gastritis-related bacteria 

presence has its links to some human SNPs. Thus, tripartite interdependencies between human 

host, bacterial, and bacteriophage components of human microbiomes can be observed, as well 

as their links to human health status.  

11.1. Bacterial taxons in ICD-classified diseases 
 

According to Table 11. some bacterial species have correlation with diseases diagnosed in the 

investigated patients. Environmental bacteria Variovorax in this study was found associated to 

3 health disorders according to ICD classification, these disorders were: K29 – “Gastritis and 

duodenitis”, R.10.4 – “Other and unspecified abdominal pain”, K21 – “Gastro-oesophageal 

reflux disease”. Variovorax is a Gram-negative motile bacterium. It was isolated from many 

extremophile environments, like Antarctic or hypersaline lakes (Shrestha et al., 2022). This 

bacterium could be observed in soil and freshwater, and its ability to adapt to challenging 

conditions may be the reason why it was found so frequently in stomach microbiome(Hwang 

et al., 2022). Some reports indicated other bacteria (from Variovorax sp.) that may be involved 

in symptomatic gastritis development, however Han et al. (H. S. Han et al., 2019) reported that 

Variovorax paradoxus was significantly correlated with histological gastritis, which is in line 

with the data presented herein (Table 11). Unclassified Variovorax was confirmed as one of 

the H. pylori infections-associated pathogens (D. Wang et al., 2022). Study by (Ndegwa et al., 
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2020) showed that Variovorax sp. was significantly enriched in samples, where H. pylori 

infection was diagnosed. Nevertheless, here this association was not observed (Table 11). 

Escherichia albertii was found also linked to K29 – “Gastritis and duodenitis”, R.10.4 – “Other 

and unspecified abdominal pain”, K21 – “Gastro-oesophageal reflux disease” ICD disease 

states (Table 11). Because of the possession of eae gene, some of E. albertii strains are often 

falsely identified as enteropathogenic or enterohemorrhagic E. coli. Pathogenicity of E. albertii 

is related to its ability to attach to intestinal epithelial cell surfaces and to produce Shiga toxin, 

a causative agent of the bloody diarrhea in infected people. (Ooka et al., 2012). Study by 

Palmas, et al (2021) shows that this bacterium is significantly correlated with microbiome 

composition which may be found more frequently in people who suffer from obesity (Palmas 

et al., 2021). Gallardo, et al (2017) demonstrated that E. albertii was confirmed as indicative 

among other species for diarrheagenic Escherichia coli group compared to the virus infected 

and healthy groups (Gallardo et al., 2017). Results presented herein show that E. albertii 

presence is correlated with the occurrence of gastrointestinal diseases (Table 11).  

Oral bacterium as Fusobacterium nucleatum was associated with Gastritis and dudenitis 

diseases classified in ICD as “K29” (Table 11). This bacterium is one the most intensively 

studied because of its correlation with many cancer cases. Its increased incidence was shown 

in esophageal cancer, pancreatic cancer, hepatocellular carcinoma, and gastric cancer (Y. Liu 

et al., 2019a, 2019b). Study performed by Surlin et al, (2020) show F. nucleatum as an 

aggravating factor for gastric cancer (Șurlin et al., 2020). Results presented herein show that 

F. nucleatum is related to gastritis and duodenitis (Table 11) which is one of the factors that 

increase probability of stomach cancer development (Waldum & Fossmark, 2021).  

Klebsiella pneumoniae is one of the most widespread pathogens in the world. It leads to serious 

oral-gastrointestinal disorders. Presence of oral Klebsiella spp. is indicatory for Inflammatory 

Bowel Disease. In mice, oral application of this bacterium leads to liver abscess formation 

(Atarashi et al., 2017; Chen et al., 2014; Sung et al., 2018). Data retrieved from Human 

Microbiome Project shows that K. pneumoniae is present among 3.9% of all human 

gastrointestinal samples (Gorrie et al., 2017). In the research conducted for this manuscript, 

this number is significantly higher, because K. pneumoniae was found in 62,9% patients where 

at least one ICD-classified disease state was diagnosed. In contrast, in patients without 
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diagnosed diseases, it was 40%. Other studies show that Klebsiella prevalence may vary 

according to geographical region and hospital or non-hospital environments (Chang et al., 

2021; Ssekatawa et al., 2021). Research presented herein shows that K. pneumoaniae is 

significantly associated with disease state causing serious implication in the gastric part of the 

gastrointestinal tract. This is consistent with studies by Chang et al (2021) and Ssekatawa et al 

(2021), where an increased prevalence of this pathogen was found among patients with 

gastrointestinal diseases 

The location of the stomach in the gastrointestinal tract means that the microbiota found inside 

is often transient and derived from the environment. Bacteria get there together with food. 

Many conditions may change abilities of the stomach that protect from infections (for example, 

a low pH changed to a more alkaline one decreases the level of protection). This provides a 

good opportunity for the growth of microorganisms from the environment, which are able to 

survive there longer due to their adaptability (Beasley et al., 2015; Lopetuso et al., 2014; Noto 

& Peek, 2017). Increased gastric pH can be associated with H. pylori infection (Sung et al., 

2018). Klebsiella variicola, Raoultella ornithinolytica, Phreatobacter cathodiphilus, 

Hydrogenophaga sp. PBC, Haemophilus sp. oral taxon 036, Serratia marcescens are 

opportunistic pathogens that may be found in soil, water, and unprocessed food. Under 

favorable conditions such as gastritis, they are able to survive in stomach (Diricks et al., 2022; 

Hajjar et al., 2020; Khanna et al., 2013; S. J. Kim et al., 2018; Rodríguez-Medina et al., 2019). 

All these bacterial taxons have been found in this work correlated to gastrointestinal diseases 

(Table 11). Gastritis can cause diversity changes in microbiome, and make it more available 

for environmental organisms. Yang et al, (2019) confirmed that for instance H. pylori infection 

was correlated with fecal microbiota switch (L. Yang et al., 2019).  

11.2. Bacteriophages in ICD-classified disease states 

    

Increased presence of Clostridioides prophages was identified among patients with “K29 - 

Gastritis and duodenitis” disease state (Table 12). It was calculated using z-test and showed 

significance with p<0.005. Clostridioides genus groups a few anaerobic species, able to form 

endospores species, including Clostridium difficile. This is a dangerous pathogen which in rare 

cases can even lead to death. Its pathogenicity is regulated by prophage activity that is involved 
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in toxin production (Fortier, 2018). Occurrence of gastritis and duodenitis in patients was 

correlated with IBD occurrence among patients (Sonnenberg et al., 2011). C. difficile is one of 

the major factors in pathogenesis of IBD (Nitzan et al., 2013). In the study presented herein 

none of the patients’ intestines were simultaneously investigated, so data that could potentially 

confirm presence of Clostridum-related IBD and gastritis were not available. 

Significantly higher prevalence of Tequatrovirus phages was identified among patients with 

“K63 - Other diseases of intestine”. It was calculated using z-test and showed significance with 

p<0.05 (Table 12). Tequatrovirus is a genus of bacteriophages that are specific, among others, 

to a wide spectrum of pathogens present in food and causing contaminations, like pathogenic 

E. coli or Shigella (Pham-Khanh et al., 2019; Zhou et al., 2022). These bacteriophages could 

not maintain their activity in typical, low pH conditions (lower than 3 (Inbaraj et al., 2022)) 

identified in stomach, so their presence indicates that at the moment of sample collection 

stomach microbiome was disturbed. ICD code K63 that was found correlated to this phage 

group indicates that other diseases were ongoing in the same time and they potentially could 

cause dysbiosis in stomach. Presence of Tequatrovirus in stomach may also be determined by 

an overgrow of their host in other parts of human gastrointestinal tract. Overgrow of particular 

type of bacteria may be followed by overgrowth of bacteriophages specific to these bacteria 

(de Paepe et al., 2014).My results suggest that in some patients in the studied group, “K63 - 

Other diseases of intestine" disease state was caused by Escherichia sp. overgrowth, with a 

subsequent increase in Tequatroviruses detected in their phageomes (Table 12.). This 

observation correlates with increased incidence of “R10.4 Other and unspecified abdominal 

pain" diagnosis. 

Increased presence of Inovirus bacteriophages was identified among patients with “K29.6 - 

Other Gastritis” disease state (Table 12). Inovirus is a group of filamentus bacteriophages 

specific to several Gram-negative pathogens that may determine serious human intestine 

diseases such as Bacteroides fragilis and Fusobacterium nucleatum. Studies performed by 

other groups indicate that bacteriophages belonging to Inoviridae are very widespread in both 

plant and human microbiomes (Handley & Devkota, 2019; Hannigan et al., 2018; Nakatsu et 

al., 2022). Inoviruses are not able to maintain activity during exposition to pH lower than 2 

(Day, 2008), so their presence in samples collected in the study presented in this dissertation 
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can be associated with disturbances in the giant gastric folds, diminished acid secretion, or 

excessive mucus secretion (Jia et al., 2022; Sánchez-Alcoholado et al., 2020). Association with 

K29.6 – “Other gastritis” presented in the conducted research may suggest that in the other 

parts of the patients’ intestine another infection was developing, resulting in identification of 

bacteriophage specific to those bacteria in the stomach. 

11.3. Single Nucleotide Polymorphisms impacts microbiome diversity 

 

Microbiome diversity is one of the parameters that allow us to take a holistic view on 

microorganisms’ communities. Its variations are significant for pathogenesis in diseases not 

only in human gut but in all organs where microbiomes could be detected such as lungs, skin, 

etc (Hufnagl et al., 2020; Mirsepasi-Lauridsen et al., 2018; Swarte et al., 2020, 2022). The 

diversity of the microbiome as expressed by the Shannon index can be an indicator of the 

presence of a disease state (Joossens et al., 2011; Manor et al., 2020; Morgan et al., 2012; Org 

et al., 2017). In this study, I discovered that the microbiome diversity index was linked to 

specific genetic variants (patient genotypes) in immune-related genes. 

In my study, I observed variants present in the human genome that were associated with 

changes in the diversity of the bacterial microbiome as expressed by the Shannon index. 

Variant in chr1:223111858 G>A in TLR5 was previously described as potential polymorphism 

associated with systemic lupus erythematosus – which is an autoimmunological disease of 

unknown pathogenesis and potential association with Burkholderia pseudomallei infection (Y. 

H. Lee et al., 2016; West et al., 2013). TLR5 gene has a significant role in recognition of 

potentially harmful pathogens in human organisms. It is used by the immune system to build 

mucosal barrier to prevent illnesses associate with inflammation in the intestines (J. Yang & 

Yan, 2017). Lee et al, (2016) showed that variant changes when observed in the middle of the 

TLR5 gene do not have to bring negative effects for a patient. It suggests that variant 

chr1:223111858 G>A may have enhanced effect on TLR5 receptor and increase its efficiency. 

Therefore, the higher diversity of bacterial microorganisms has been observed herein (Table 

13), thus suggesting a lower risk of overgrow by pathogens.  

Upstream gene variant was observed in the IL-1β gene (Table 13) and it was significantly 

related to decreased microbiome diversity. IL-1β is related to production of a crucial cytokine: 
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interleukin 1 (IL-1β), involved in immunological response to viruses, bacteria, and fungi. IL-

1β induces production of interferons, IL-6 or TNF. Expression of IL-1βaffects lymphocytes T 

and development of lymphocytes B (Lopez-Castejon & Brough, 2011). Variant in 

chr2:112834786 is located upstream the gene. In this dissertation, a significant decrease of 

diversity in stomach bacterial microbiome was observed in association with this variant. 

Similar fluctuations in microbiome diversity have already been reported in other mammals. 

For instance, in mice, Il-1 receptors deficiency resulted in microbiome diversity drop (Rogier 

et al., 2017). Variant may have impact on IL-1β expression, so host-response to pathogens may 

work with decreased efficiency. It creates an opportunity for some pathogens to overgrow 

which may result in decreased diversity.  

Upstream gene variant was observed in the TLR2 gene (Table 13) and it was significantly 

related to increased microbiome diversity. Toll-like receptor 2 coded by TLR2 gene plays a 

crucial role in the innate immune response to a wide variety of bacteria and other 

microorganisms. Some studies showed in mouse model that this gene’s knockout render 

animals more susceptible to sepsis development by Staphylococcus aureus, meningitis by 

Streptococcus pneumoniae, and to Mycobacterium tuberculosis infection. TLR2 receptor is 

activated by bacterial cell wall elements (Fujiwara et al., 2018; Texereau et al., 2005). 

Although the detected variant is synonymous, studies show that it can potentially affect 

messenger RNA splicing, stability, and structure as well as protein folding (Hunt et al., 2009). 

It suggests that variant in chr4:153704257 T>C by changing its gene expression, influences 

the environment of the gastric microbiome increasing its diversity, as observed in the study 

presented herein (Table 13). 

Variant in TLR10 gene is significantly related to decreased microbiome diversity. G>A variant 

in chr4:387830009 in the coding region of TLR10 gene is an upstream gene variant. This gene 

expression occurs in B cells and plasmacytoid dendritic cells. TLR10 ligands and their origin 

are not determined. Modifications of microbiota in different cancers are results of activation 

of specific TLRs, but the exact mechanism is still unknown (le Noci et al., 2021; Yinhang et 

al., 2022). Literature shows that some polymorphisms increase susceptibility to various 

infections either bacterial or viral (Henrick et al., 2019; Y. Wang et al., 2018). Among patients 
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investigated in this study decrease of microbiome diversity can be observed in association with 

this variant (Table 13.) which indicates that variant can impair the gene function.  

Variant T>A in the TLR1 gene was observed and significantly related to decreased microbiome 

diversity (Table 13). Missense variant in the chr4:38797918 in the middle of TLR1 gene 

indicates a change of amino acid that is substituted. This change resulted in decreased diversity 

of bacterial microbiome composition in patients’ stomach. TLR1 gene works together with 

TLR2 gene since their products create a heterodimer. It can recognize lipoproteins that are 

characteristic for bacterial cells (Burgueño & Abreu, 2020; Mcdermott & Huffnagle, 2014). 

Study by Kamdar et al, (2018) shows that sensing of the gut microbiota by TLR1 provides 

crucial signals for regulation of colonic epithelium functions and inflammation which results 

in prevention of pathogen attachment to the mucosa (Kamdar et al., 2018; Takeuchi et al., 

2002). Missense mutation might deregulate function of the TLR1 gene, so it is not working 

efficiently. This promotes overgrowth of pathogenic bacteria and leads to a state of dysbiosis 

and at the same time reduced diversity, as observed herein (Table 13.). 

In the IL-6 gene, 7 upstream gene variants were observed (Table 13). All of them increased 

diversity of bacterial microbiome composition in patients’ stomach. Interleukin 6 is involved 

in the pathogenesis of IBD. Its role is to differentiate T helper 17 cells and mediate destructive 

inflammatory response. Overexpression of that gene is observed during gram-negative bacteria 

overgrowth inside gut (Higuchi et al., 2018; Shahini & Shahini, 2022; S. Wu et al., 2022). In 

mice, no significant changes in microbiome diversity were observed after Il-6 knockout(S. Wu 

et al., 2022). Nevertheless, in this study I have observed that the specific variants identified in 

the investigated patients were associated to increased diversity in patients’ microbiomes. For 

instance, by altering the structure of the expressed RNA, these variants may affect the 

efficiency of IL-6 expression, as well as the formation of structures and interaction with other 

fragments of the genome.  
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11.4. Brussowirus and Triavirus correlate to decreased microbiome diversity 

 

Results presented in the Figure 8. reveal two bacteriophages in stomach microbiomes that were 

associated with decreased bacterial diversity expressed in Shannon diversity index. 

Brussowvirus is a dsDNA virus with genome of 40 kb. It has a non-contractile tail and an 

icosahedral head. This phage is specific to Streptococcus spp. including S. agalactiae, and its 

presence was confirmed in environmental biomes (Abril et al., 2020; Hanemaaijer et al., 2021). 

Triavirus is a dsDNA bacteriophage specific to Staphylococcus spp. including S. aureus 

MRSA. This virus contains a prolate head and a non-contractile tail (Feng et al., 2021; Klimka 

et al., 2021). Presence of these two bacteriophages can be potentially linked to presence of 

their hosts that may potentially be pathogenic and cause inflammatory states or dysbiosis in 

the stomach or intestines. They presence can indicate overgrowth of some bacteria and 

decreasing the diversity among bacterial composition of microbiome. 

 

11.5. Bacterial components influence microbial diversity  

 

Six bacterial species were selected basing on literature data and investigated whether they are 

linked to changes in microbiome diversity. Helicobacter pylori is the most investigated 

pathogen related to gastric cancer. Thanks to urease secretion and pathogenicity islands, this 

bacterium can survive in the challenging environment of gastric juice and peristaltic 

movements (Alexander et al., 2021; Kinoshita-Daitoku et al., 2021). Nevertheless, results of 

this work do not confirm a significant effect of the presence of H. pylori on the diversity of the 

bacterial microbiome. T-test applied to the data analysed herein revealed that differences in 

infected and infection-free individuals were insignificant (Table 14.). It is highly probable that 

this was due to the fact that H. pylori can exist in coccoid forms - remaining enzymatically 

inactive. 16S sequencing is more sensitive in detecting this form of H. pylori infection than 

other commonly used methods for H.pylori detection (Gantuya et al., 2021; Szymczak et al., 

2020), so possibly forms that did not affect gut conditions prevailed in this study.  
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Rothia mucilaginosa was confirmed as associated to gastritis in studies on oral microbiota. 

Due to the structure of the digestive tract, a part of the microbiome from the oral cavity can 

also be temporarily observed in the stomach. R. mucilaginosa is a facultative anaerobe and 

opportunistic bacterium that may cause, among others, bacteremia, endocarditis, and 

pneumonia. It typically affects immunocompromised patients (F. teng Li et al., 2012; Z. M. 

Sun et al., 2013). By its presence it significantly impacts diversity of bacterial microbiome 

increasing it. Recently, Rigauts et al, (2022) reported that R. mucilaginosa expressed anti-

inflammatory activity in lungs (Rigauts et al., 2022). This suggests that the documented 

negative correlation of this bacterium presence with pro-inflammatory markers may prevent 

dysbiosis and overgrowth which increase alpha-diversity, as observed also herein (Table 14).  

Prevotella melaninogenica as an anaerobic commensal microorganism, one of the first species 

that inhabits human oral cavity immediately after birth. Its presence was increased in tumor 

tissues in stomach where H. pylori was eradicated (Könönen & Gursoy, 2021b; S. Wang et al., 

2022; Waskito et al., 2022). P melninogenica significantly decrease diversity in stomach 

microbiome. Study shows that it may be responsible for triggering expression of antimicrobial 

peptides, cytokines(P. Xu et al., 2022). Increased inflammatory responses may lead to 

dysbiosis and decreased microbiome diversity index (J. Wang et al., 2020) which was also 

observed in data from this work, as presented in the Table 14. 

Neisseria subflava is one of pathogens that strongly correlates with H. pylori presence. It can 

induce interleukin 8 production which cause the reduction of gastric acid secretion (Cui et al., 

2022; Duan et al., 2022; Miyata et al., 2019). N. subflava has also been reported as a pathogen 

causing meningitidis and endocarditis (Baraldès et al., 2000). However, studies conducted on 

this patient group did not yield enough data to statistically evaluate its relation to microbiome 

diversity (Table 14). 

The presence of Prevotella jejuni was confirmed in the group of patients investigated in this 

study. P. jejuni is a pathogen that was related to symptomatic gastritis. Its anaerobic properties 

make it capable of surviving in the stomach environment (Könönen & Gursoy, 2021a). 

However, my observations did not confirm that the presence of P. jejuni does not significantly 

correlated to any changes in the diversity of the microbiome (Table 14). 
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Salmonella enterica is one of the most spread foodborne pathogens that may have serious 

health implications. In this study S. enterica was included to evaluate whether gut pathogens 

may cause complications in upper sections of the gastrointestinal tract (Knodler & Elfenbein, 

2019; Zha et al., 2019). S. enterica presence significantly decreases bacterial microbiome 

diversity which was presented in the Table 14. Previous studies report that its presence is 

strongly associated with inflammatory states and lowered bacterial Shannon index. 

Nevertheless, there is no literature data that suggest such effect in the stomach. As presented 

in the Table 14, S. enterica may correlate to decreased diversity in microbiome and thus 

potentially cause problems in in the upper sections of the gastrointestinal tract, particularly in 

stomach. 

11.6. Principal component analysis - biplots 
 

In two dimensional biplot (vectors angles analysis) in the Figure8. one can observe that 

probiotic bacterial genera negatively correlate with potential pathogenic groups like 

Acinetobacter, Moraxella, Flavobacterium, or Corynebacterium. Samples “E35” and “E180” 

are clearly outstanding from other samples. Sample “E35” was collected from a 44 year old 

woman suffering from lower abdominal pains. Histological results revealed focal 

inflammation and erosion in the stomach. I have found that her bacterial microbiome was 

completely dominated by Proteobacteria and Enterobacterieaceae that are normal components 

only for fecal microbiome (Litvak et al., 2017; Shin et al., 2015). Here one can observe a 

dysbiosis developed by overgrowth of Enterobacteriaceae family. Typically, human stomach 

microbiome should be dominated by Firmicutes, Bacteroidetes, and Actinobacteria 

(Mukhopadhya et al., 2012; Nardone & Compare, 2015a). Microbiome profiling for “E35” 

patient is visualized in the Figure 18. 
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Figure 18. Bacterial microbiome profiling based on 16S rRNA genes sequencing in sample 

“E35”. Figure created using Krona Tools. 

 

Sample “E180” was collected from a 43-year-old woman after a successful H. pylori 

eradication. She was however diagnosed with “K29” – Acute hemorrhagic gastritis. Based on 

taxonomic analysis of her stomach microbiome presented in the Figure 18, it is possible to 

confirm the presence of bacterial groups that significantly affected outlying location of this 

sample on the biplot chart, like Moraxellaceae (Acinetobacter), Burkholderaceaceace 

(Ralsonia), Clostridiales (Fastidiosipila).  
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Figure 19. Bacterial microbiome profiling based on 16S rRNA genes sequencing in sample 

“E180”. Figure created using Krona Tools. 

Biplot based on phageome data presented in the Figure9. revealed that Triavirus had a 

significant contribution of the variables to the principal component analysis. In this study, 

Triavirus was also observed as correlated with significant decrease of bacterial microbiome 

diversity. Further analysis demonstrated that its presence was completely opposite contributing 

to PCs than Brussowvirus (Figure 9.) that was also associated with decreased Shannon index. 

Sample “E157” was collected from a 58-year-old woman with asthma and diabetes, and after 

gallbladder excision. Her gastric disorder was classified as “K29.9-Gastroduodenitis”. Her 

phageome was completely dominated by Staphyloccoccus prophages, as demonstrated in the 

Figure 19 – 91.51% of identified sequences was derived from Staphylococcus prophages. Such 

dominance of one factor resulted in an outlier position of E157 on the biplot (Figure 9). This 

strongly suggests that this patient suffered from a staphylococcus-linked dysbiosis and the 

dominant phage type played a role of a biomarker.  
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Figure 20. Phageome profiling based on shotgun sequencing in sample “E157”. Figure created 

using Krona Tools. 

Sample “E95” was collected from a 49 years old woman with no chronic illnesses declared 

neither this patient declared any medications taken permanently. The patient was diagnosed 

with “K29 - Gastritis and duodenitis”. Her phageome was dominated by Salmonella prophages 

and Tequatroviruses (Figure 20). According to the biplot (Figure 9), both these groups had 

significant contribution to the principal component. The overrepresentation of one taxon may 

be the cause of the apparent position on the biplot chart, which can be described as an outlier. 

Phageome profile of the patient is presented in the Figure 21. This composition suggests that 

the occurrence of gastric complaints classified as K29 may be caused by dysbiosis through the 

proliferation of bacteria of the genus Salmonella and Escherichia where phages specific to 

them accounted for 54.88% and 19.67% of the total phageome, respectively. 
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Figure 21. Phageome microbiome profiling based on shotgun sequencing in sample “E95”. 

Figure created using Krona Tools. 

11.7. Lack of clear clusters in bacterial and phageome composition by 

diseases states and Single Nucleotide Polymorphisms 
 

Principal Component Analysis on microbiome composition data allows to distinguish clusters 

of factors that may significantly impact the microbiome shape at different taxonomy levels. 

Exemplary plots from the data in this study are presented in the Figure 13. Clustering helps to 

detect associations that may be difficult to find when analyzing only similarities between 

sequences (Sankaran & Holmes, 2019; P. Zhang et al., 2019). PCA dimension reduction 

automatically leads to K-means clustering using an objective function (Ding & He, 2004). Data 

from the literature suggest that the deeper is the sequencing, the more subtle differences 

between clusters can be detected (Ansari et al., 2015; Konishi et al., 2019; Lu, Ren, et al., 2016; 

Ramírez et al., 2016). The differences between the samples did not carry over to entire groups 

of bacteria either. They concerned the overrepresentation of single groups. Small differences 

in the composition of the microbiome can however affect an organism and not necessarily be 

apparent when analyzing large amounts of data (Björklund & Björklund, 2019; Jollife & 

Cadima, 2016). 
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In this study, no significant clustering results were observed in PCA plotting between 

investigated SNPs and microbiome composition. Exemplary plots are presented in the Figure 

14. The differences relating to the x and y axes between the different samples in the graphs are 

not enough distinct to be statistically significant. Other studies revealed that variants in FUT2 

and LCT genes could be responsible for increased colonization with probiotic strains such as 

Bifidobacterium longum. Genome Wide Associated Studies also suggested that alleles could 

only affect gene expression in individual organs and, consequently, affect the microbiomes 

locally, that is, only the microbiome present in these organs (Awany et al., 2019; Kolde et al., 

2018b; Rothschild et al., 2018). Of note, typical cohort studies for genotyping include hundreds 

or thousands of samples (Awany et al., 2019; Rothschild et al., 2018), while this study was 

limited to 44 complete samples allowing for analysis of 16S rRNA – SNPs interactions. This 

may result in problems with identifying of correlations. On the other hand, populations may 

differ in their characteristics. Here a Polish population was investigated and it is not clear how 

far results from other populations can be extrapolated to this one.  

3D PCA scores were previously used in microbiome research to compare composition of 

microbiota between samples treated with different factors (Shang et al., 2016; L. Yang et al., 

2020). In this study, 3D PCA analysis is presented in the Figure 15 and 16. During the interview 

prior to sample collecting patients informed on their chronic diseases/comorbidities. Samples 

were clustered by the microbiome composition separately based on phageome and bacterial 

data. Figure 15. demonstrates that samples from patients with hypertension stand out further 

on the chart because of their different bacteriophage composition. Bacterial composition does 

not allow for the same conclusions. Samples from patients with hypertension did not stand out 

from the main cluster of bacterial patients’ microbiomes. Previous studies have shown that 

some viruses can be hypertension biomarkers. Han et al, (2018) even reported correlated 

systems between viruses and bacteria in human gut virome. They found ubiquitous viral-

bacterial associations in healthy individuals, from pre-hypertensives to hypertensive patients 

(M. Han et al., 2018). Another investigation by de Jonge et al, (2022) showed bacteriophages 

closely related to metabolic syndrome. Candidatus Heliusviridae, which is widely spread gut 

phage lineage, was determined as a biomarker to their study group (de Jonge et al., 2022). 

Previously described results showing associations between the presence of bacteriophages and 

the ailments with which metabolic syndrome is associated suggest that stomach phageome may 
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be related to hypertension occurrence among patients. Nevertheless, study on a bigger group 

is needed to evaluate this finding.  

 

11.8. Gene variants related to bacteriophages’ hosts presence 
 

Genetic variants in immune responses-related genes that are associated to specific 

bacteriophage presence in microbiomes are also known to be a part of defense against 

eukaryotic viral infections. Those identified in this study are presented in the Table 15. IL-1β 

seems to be crucial in inducing the inflammation state (K. S. Kim et al., 2015). IL-1β is 

expressed in a wide range of tissues and a wide variety of cells. Its presence was confirmed in 

gastrointestinal tract either IL-1β a promotes differentiation of monocytes into conventional 

dendritic cells and supports the proliferation of activated B-lymphocytes. IL-1 family cytokine 

members trigger innate inflammation and works as damage-associated molecular patterns 

(DAMPs) (Kaneko et al., 2019; K. S. Kim et al., 2015). Van Belleghem et al. showed that 

Staphylococcus specific phage, as well as Pseudomonas specific phage triggered immune 

response based on IL-1β. Both these phages belong to Kayviruses (van Belleghem et al., 2017). 

Lambdavirus, Kayvirus, and Salmonella prophages are viruses specific to potential harmful 

bacteria that in terms of decreased activity of IL-1β may have an opportunity to develop 

infection. Variants within the IL-1β gene can impair its function. Impaired IL-1β function can 

result in the proliferation of particular pathogens, and thus increase the presence of 

bacteriophages specific to them. Such a phenomenon may result in concomitance along with 

individual alleles. It is possible that immunological disfunctions related to variants in IL-1β 

coding gene result in higher frequency of pathogenic bacteria in microbiomes and this is linked 

to increased representation of bacteriophages that infect these bacteria.  

 

Alleles in the area of IL23R gene were previously reported as related to gastritis (Zandi et al., 

2014). This gene encodes a pro-inflammatory cytokine and it can be activated by macrophages 

and dendritic cells. Studies in mice showed that variants of IL23R gene might play a role in 

autoimmune diseases, also, specific mutations could lead to lower expression of this gene in 

tissues related to gastrointestinal tract (Peng et al., 2017; Tang et al., 2012). Deficiency of an 

important pro-inflammatory cytokine might result in conditions promoting survival of the 
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hosts of Punavirus (Escherichia sp.), Lambdavirus (Esherichia sp.), and Kayvirus 

(Staphylococcus sp.) bacteriophages in the stomach, as observed in this study (Table 15). 

Interleukin 22 (IL-22) plays an important role in inducing antimicrobial immunity and 

maintaining the integrity of the mucosal barrier in the intestine. IL-22 exhibits a variety of 

metabolic benefits as it improves insulin sensitivity, preserves intestinal mucosal barrier and 

endocrine function, reduces endotoxemia and chronic inflammation, and maintains lipid 

metabolism in the liver and adipose tissues (X. Wang et al., 2014). Other studies showed that 

proper functions of IL-22 have a positive influence on microbiome diversity which leads to 

preventive properties (Hammer et al., 2017). Nevertheless, IL-22 disruption can cause 

dysbiosis and also impair mucosal immunity (X. Wang, Ota, et al., 2014). Data obtained in my 

study show that the variant rs976748 is associated with presence of Kayvirus bacteriophages. 

This SNP is upstream gene variant – sequence located 5’ of the IL-22 gene. A variant that 

occurs upstream of a transcript but within the gene's coding region due to alternately 

transcribed isoforms and can alter the expression of this gene. The impairment of its function 

can cause favorable conditions for the overgrowth of potentially pathogenic E. coli that is a 

host for bacteriophages Lambdavirus and Punavirus- the groups detected as more frequent in 

this study (Table 15). 

 

Interleukin 6 belongs to the family of cytokines that takes part in B-cell and T-cell stimulation. 

Neutralizing IL-6 family cytokines decreases risk of autoimmune diseases, but significantly 

increases the risk of developing a bacterial infection (Rose-John, 2018). Associations between 

microbiome diversity and interleukin 6 secretion was previously described by Smith et al, 

(2019). Increased abundance of Bacteroidetes and Firmicutes was associated with Interleukin-

6 increased concentration (Smith et al., 2019). Rs2069833 allele identified in this study as 

associated to phageome composition is located in a non-coding region that previously was 

reported as one of the factors strongly associated with prostate cancer risk increase (Pierce et 

al., 2009). This variant may have influence on final concentration of Il-6 circulating in blood. 

Concomitance with phages specific to Streptococcus sp., Staphylococcus sp., and Escherichia 

sp. may indicate the creation of conditions with decreased immunological control that allows 

for the development of pathogens from these bacterial families. 
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MTHFR variant rs4846051 was previously described in the literature as related to drug 

metabolism pathways and birth defects (Ahn & Park, 2017; Aneji et al., 2012; Borobia et al., 

2018; D’cruz et al., 2020; Rose-John, 2018). Encoding methylenetetrahydrofolate reductase is 

important for homocysteine recycling process. Mutations in this gene lead to decreased 

efficiency of the enzyme activity. This further leads to increased level of homocysteine in 

blood. Increased susceptibility to pathogen infection such as H. pylori was documented where 

homocysteine level was elevated (Park et al., 2017). High concomitance with Lambdavirus 

specific to Escherichia coli opportunistic pathogen may indicate that with these variant 

favorable conditions are created for this bacterium in the stomach environment.  

 

Peptidoglycan recognition proteins coded by PGLYRP4 gene have a crucial role in 

antimicrobial and anticancer immunological processes. Spatial structure of the main protein’s 

domain is similar to bacteriophage type 2 amidases that are involved in cell wall binding and 

exolytic activity among phages (Igartua et al., 2017b; Son et al., 2018; Z. Zhang et al., 2012). 

PGLYRP can affect microbiome composition in several way such as: regulation of reactive 

oxygen species, presence in mammalian milk and expression in mucous membranes 

throughout all segments of the gastrointestinal tract. Deficiency of PGLYRP protein leads to 

dysbiosis and significant drop of microbiome diversity which may lead to health complications 

(Royet et al., 2011; Z. Zhang et al., 2012). Changes in the diversity of the microbiome by 

regulating the recognition of factors on the surface of bacterial cell walls can also lead to 

regulation of the composition of local microbiome. Disruption of the immune response in the 

gastric mucosal layer can lead to the creation of favorable conditions for infection by 

opportunistic microorganisms belonging to groups against which Lambdavirus (E. coli), 

Kavirus (S. aureus) and Punavirus (S. enterica) bacteriophages are specific; these phages were 

found corelated to PGLYRP4 gene in this study (Table 15).  

 

Variants among involved in cell metabolism genes such AURKA and RBMS1 were identified 

with concomitance in Lambdavirus, Teseptimavirus and Punavirus (Table 15). Deficiency of 

Aurora-A protein encoded by Aurka gene lead to dysbiosis and obesity promotion in human 

while mutations in RBMS1 gene is associated with increased risk of type 2 diabetes(Sánchez-
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Maldonado et al., 2022; N. Sun et al., 2021). In both cases dysbiosis in bacterial microbiomes 

can be linked to changes in phageomes, which is in line with my observations presented herein. 

 

11.9. Genes related to gastritis-associated pathogens 
 

Helicobacter pylori has been demonstrated in many studies as associated with gastritis, 

development of stomach cancer, and reflux. It is a Gram-negative bacterium that is able to 

colonize gastric epithelial cells and gastric mucosa. Interleukin 22 expression level is 

significantly higher among patients with H. pylori infection. Data regarding H. pylori in this 

study is presented in the Table 16. H. pylori triggers immunological response that can damage 

mucosal cell layer in stomach creating opportunity for H. pylori to develop persistent infection 

(Sanaii et al., 2019). Increased TSPAN8 expression promotes gastric cancer (Wei et al., 2015). 

Patients infected with H. pylori and carriers of specific -31CC genotype had significantly lower 

expression of IL-1β. Additionally, compared to uninfected controls, patients with duodenal 

ulcers who had H. pylori infection had a significantly higher frequency of the T/C haplotype 

of the IL-1β 511 and IL-1β 31 loci (Chakravorty et al., 2006).  The IL-1β -511C and -31T 

alleles, as well as the -511C/-31T and -511T/-31T haplotypes, are linked to an elevated risk of 

chronic gastritis and stomach ulcer, as demonstrated in the southern Mexican population (Ren 

et al., 2019). Gastric cancer is more likely to occur in a subgroup of people who have 

Helicobacter pylori infection and carry the LTA +252G allele. There may also occur an 

interaction between IL-10 and LTA that further increases the risk of gastric cancer (He et al., 

2012). Nod1 detection of H. pylori was dependent on the bacterial type IV secretion system, 

encoded by the H. pylori cag pathogenicity island, delivering peptidoglycan to host cells (Viala 

et al., 2004). TLR expression facilitates interaction between H. pylori and gastric cancer cells. 

TLR expression by gastric carcinoma cells may be harmful since H. pylori might provide 

substances that promote stomach cancer, like IL-8, through epithelial TLR expression 

(Schmaußer et al., 2005). The correlation of the presence of H. pylori with variants in genes 

responsible for the immune response (IL22, CCDC33, IL23R, IL1B, IL6, NOD1, TLR4) and 

the cell cycle (TSPAN8, CACNA1A, CDKAL1, LTA) suggests that they create favorable 

conditions for the growth of this pathogen by disrupting their function. Correlations presented 

in the Table 16. along with reports from other studies indicate that variants among reported 



116 
 

genes may increase risk of gastrointestinal disorders together with the biological agent that 

might be the bacterium H. pylori.  

Data regarding R. mucilaginosa in this study is presented in the Table 17. The stomach biopsy 

sample yielded a total of 18 non-H. pylori bacterial genera (43 species), the majority of which 

were gram-positive bacteria, including R. mucilaginosa (Hu et al., 2012). Alleles correlated 

with the occurrence of R. mucilaginosa may suggest that by weakening the immune response 

due to a reduction in gene efficiency (like the genes L22, TMEM91, MADCAM1, ELANE, 

IL23R, GHRL, IL12A, TLR10, CDKAL1, NOD1, SLC30A8), they create conditions for the 

growth of this bacterium. Due to its proven co-infection properties in gastrointestinal disorders, 

mutations directly affecting the growth promotion of R. mucilaginosa may contribute to an 

increased risk of gastrointestinal disease.  

Prevotella melaninogenica bacterium creates acid in the medium and can survive in acidic 

conditions when growth on blood-containing media. Data regarding P. melaninogenica in this 

study is presented in the Table 18. Enrichment with Prevotella spp., namely P. 

melaninogenica, may cause rise of stomach pH above levels characteristic for non-atrophic 

gastritis. Additionally, iron inhibits proliferation of Prevotella species. In the atrophic gastritis, 

the gastric mucosa is destroyed, causing blood and tissue fluids to flow into the gastric fluids, 

which may lead to a higher iron level than in non-atrophic gastritis (T. Dong et al., 2017b). 

Prostaglandins are a group of hormones, derivatives of arachidonic acid, which are formed in 

the tissues of the human body and act at the site where they are formed. Prostaglandins are 

responsible for such physiological processes in the body as the response to pathogens. 

Prevotella spp. growth is therefore inhibited in the group of people with atrophic gastritis. 

Mutations among MUC1 gene may promote bacterial growth by lowering mucosal immunity. 

Activity of MUC-C was associated with colorectal and gastric carcinomas (Kufe, 2009). The 

presence of P. melaninogenica significantly affects the diversity of the bacterial microbiota in 

the stomach (Table 14.) and is significantly related to variant in MUC1 gene (Table 19.). 

Through reduced mucosal immunity, favorable conditions are created for the proliferation of 

potential pathogens like P. melaninogenica. This may be the reason for the reduced diversity 

of the microbiome. 
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During the analysis of the composition of the gastric microbiome in this group of patients, 

Neisseria sp. was identified. Detailed analysis of sequences revealed that these Neisseria 

strains were mostly Neisseria subflava. In terms of pathological interactions, Neisseria sp. and 

H. pylori coinfection was strongly linked to lymph follicle formation (Nakamura et al., 2006b). 

Data regarding N. subflava in this study is presented in the table 19. In European populations, 

a variant in the fat mass and obesity-associated gene (FTO) is linked to body mass index (C. 

Zhang et al., 2009). CLEC16A – C-type lectin domain containing 16A. Expression of this gene 

is highly associated with B-lymphocytes, NK, and dendritic cells activation. Cell surface-

associated mucin 1, also known as polymorphic epithelial mucin or epithelial membrane 

antigen or EMA, is a mucin in humans encoded by the MUC1 gene. MUC1 is a glycoprotein 

with extensive O-glycosylation of its extracellular domain. Mutations in genes related to 

immunological response processes can lead to its impairment. In light of reports where N. 

subflava may be a concomitant factor in H. pylori infections, this may suggest that identified 

variants (Table 19) could potentially increase the risk of gastritis and related conditions. 

 

Data presented in the Table 20 is related to Prevotella jejuni. Its cells are Gram-negative bacilli 

that are obligately anaerobic and non-motile, it can bind to human intestinal tissues and to 

agglutinate human AB and O erythrocytes (Hedberg et al., 2013). Analysis of data from 

patients included in this study showed that a variant within the CDKAL1 gene (chr6:20657114 

T>C) is strongly associated with the presence of P jejuni in gastric sample (Table 20). 

CDKAL1 alleles were identified as a susceptibility gene for type 2 diabetes in five subsequent 

GWAS in several population cohorts of European and Asian ancestry. It has also been reported 

that CDKAL1 genetic variations are linked to -cell function (Schroner et al., 2012). detected 

variants in genes that may be responsible for increasing the risk of developing type two 

diabetes or obesity may negatively affect the diversity of the microbiome. At the same time, 

this creates conditions for overgrowth of pathogenic bacteria such as P jejuni. 

 

11.10. Host and phage associations with Single Nucleotide Polymorphisms. 
 

Data presented in the Table 21. shows association between bacteriophages and their potential 

hosts and SNPs detected in hosts’ genomes. These mutations include genes from both cells 
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signaling, immune responses, and metabolism. Disorders in these strategic processes can affect 

the development of many diseases, as well as the propagation of bacterial survival in body 

niches such as the human stomach. These alleles, through potential impairment of the function 

of proteins encoded by the modified genes, may lead to changes in the composition of the 

phageome of the human stomach by affecting the bacterial part of the microbiota (Cadwell, 

2015; Ma et al., 2018; Manrique et al., 2016; Virgin, 2014; Zárate et al., 2017). The mutations 

shown may predispose certain microorganisms to grow within a particular microbiota. 

However, the tripartite relationship described here is also susceptible to external factors. Both 

the bacterial and viral composition of humans is not predetermined by their genetic factors. 

External factors such as diet, developmental environment, or the geographic zone where a 

person leads his life must also be taken into account in the formation of such (Cadwell, 2015; 

Zárate et al., 2017). 

12. Conclusions 
 

• Specific health disorders according to the ICD10 classification correlate with bacterial 

components of the gastric microbiota 

• Specific health disorders according to the ICD10 classification correlate with 

bacteriophage elements of the gastric microbiome such as Clostridioides prophages, 

Tequatrovirus, Inovirus  

• Differences between bacterial microbiome compositions clustered ICD-10 classified 

samples are insignificant in the investigated group 

• Change in phageome composition in chronic hypertensive disease has been observed, 

but changes in the composition of bacterial components of the microbiome have not 

been observed, thus suggesting a direct link between phage community and the disease 

(not mediated by bacterial host contribution) 

• There is a link between mutations in genes responsible for cell signaling and immune 

response and presence of bacteriophages Kayvirus, Punavirus, Lambdavirus or 

Teseptimavirus in the investigated phageomes 
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• Single nucleotide variants identified and correlated with gastritis-associated pathogens 

can affect the entire microbiome composition and predispose specific species to grow 

thereby leading to dysbiosis 

• In most cases, phageome composition seem to depend on bacterial composition of 

microbiome and enriched components of phageome probably indicate that relevant 

bacterial hosts were enriched in the bacterial part of microbiome 

• The presence of specific alleles in genes can promote the growth of certain bacteria by 

impairing the function of the genes in which they occur 
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13. Streszczenie 
 

Postęp w dziedzinie sekwencjonowania następnej generacji zapoczątkował bardziej 

szczegółowe badania ludzkiego mikrobiomu. Metoda ta pozwoliła na jednoczesne 

sekwencjonowanie wielu próbek, co obniżyło koszty, a także zbadanie frakcji 

mikroorganizmów, które wcześniej nie mogły być badane ze względu na trudności w hodowli. 

Podczas trwania tego projektu, od pacjentów Pracowni Endoskopii Wojewódzkiego Szpitala 

Specjalistycznego, podczas badania gastroskopii pobierany był wycinek części 

odźwiernikowej żołądka. Od pacjentów pobierana była także krew do dalszej analizy 

pojedynczych mutacji nukleotydowych. Informacje o pacjentach zostały zebrane podczas 

wywiadu poprzedzającego badanie, a także za pomocą bazy danych medycznych Asseco 

Medical Management Solutions (AMMS). Po wyizolowaniu DNA z próbek, zostały one 

zsekwencjonowane za pomocą aparatury Illumina NextSeq550 oraz Ion Torrent Personal 

Genome Machine. Dane ze wszystkich rodzajów analizy zostałe ustandaryzowane i 

przeznaczone do analizy statystycznej.  

Analiza statystyczna składników bakteryjnych i chorób sklasyfikowanych w 

Międzynarodowej Statystycznej Klasyfikacji Chorób ICD-10 ujawniła czternaście korelacji. 

Analiza statystyczna komponentów bakteriofagowych ujawniła trzy korelacje z chorobami 

sklasyfikowanymi w ICD-10. Trzynaście pojedynczych mutacji nukleotydowych, jest 

powiązane ze statystycznie istotnymi zmianami w różnorodności mikrobiomu. Sześć 

polimorfizmów nukleotydowych zostało powiązanych z obecnością bakteriofagów z rodzin 

Kayvirus, Punavirus, Lambdavirus oraz Teseptimavirus. Warianty pojedynczych nukleotydów 

występujące w patogenach związanych z zapaleniem błony śluzowej żołądka mogą zmieniać 

cały skład mikrobiomu i predysponować określone gatunki do wzrostu, co skutkuje dysbiozą. 

Obecność specyficznych alleli w genach może promować wzrost bakterii poprzez 

upośledzenie funkcji genów, w których występują. 

SNP znalezione w patogenach związanych z zapaleniem błony śluzowej żołądka mogą 

wpływać na skład mikrobiomu i predysponować określone gatunki do wzrostu, co skutkuje 

dysbiozą i rozwojem stanów chorobowych. 
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14. Abstract 
 

The advancement of Next-Generation Sequencing has supported the study of the human 

microbiome. This method allowed for the simultaneous sequencing of multiple samples, which 

reduced the cost. It enabled researchers to learn about microorganism fractions that could not 

previously be studied due to cultivation difficulties. 

Patients in this study were subjected to gastroscopy by gastroenterologists at the Regional 

Specialized Hospital in Wroclaw. Over the course of two years, 148 gastric samples were 

collected from patients at the Endoscopy Department of the Regional Specialist Hospital in 

Wroclaw. Each patient had two separate specimens taken, and blood samples were collected 

for further Single Nucleotide Polymorphisms (SNP) analysis. Patients' information was 

gathered through interviews and the medical database Asseco Medical Management Solutions 

(AMMS). Following the isolation of DNA from samples, Illumina NextSeq550 and Ion 

Torrent Personal Genome Machine were used for DNA Next Generation Sequencing. Data 

from all three types of NGS data analysis were converted into standard formats for further 

statistical data analysis. 

Statistical analysis of bacterial components and ICD-classified diseases revealed fourteen 

correlations. Statistical analysis of bacteriophage components revealed three correlations with 

ICD-classified diseases. The analysis revealed 13 SNPs that were associated with significant 

changes in microbiome diversity. Six different Single Nucleotide Polymorphisms in this gene 

have been linked to the presence of bacteriophages from the Kayvirus, Punavirus, 

Lambdavirus, and Teseptimavirus families. Single nucleotide variants found in gastritis-

associated pathogens can alter the entire microbiome composition and predispose specific 

species to grow, resulting in dysbiosis. The presence of specific alleles in genes can promote 

bacterial growth by impairing the function of the genes in which they occur. 

SNPs found in gastritis-associated pathogens can alter the entire microbiome composition and 

predispose specific species to grow, resulting in dysbiosis and developing disease states. 
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